
SNR Estimation in a Non-Coherent MFSK Receiver
with Diversity Combining

Aamra Arshad and Syed Ali Hassan
School of Electrical Engineering & Computer Science (SEECS)

National University of Sciences & Technology (NUST), Islamabad, Pakistan

Email: {12mseeaarshad, ali.hassan}@seecs.edu.pk

Abstract—In this paper, the problem of signal-to-noise ratio
(SNR) estimator design for a single-input multiple-output (SIMO)
communication system employing non-coherent M-ary frequency
shift keying (NCMFSK) modulation scheme is considered. The
transmitted signal undergoes Rayleigh fading and additive white
Gaussian noise (AWGN) and is received at a receiver with L

diversity branches. Closed-form expressions of data aided (DA)
and non-data aided (NDA) estimators have been derived using
the maximum likelihood (ML) estimation approach. Cramer-Rao
bound has been evaluated to compare the performance of the
designed estimators. The effect of increasing the receiver diversity
branches on the performance of estimators has been quantified.

Index Terms—SNR Estimation, Receiver Diversity Combining.

I. INTRODUCTION

Signal-to-noise ratio (SNR) is one of the most important and

critical performance metrics for analyzing the performance

of wireless communication systems. Prime utilization of

SNR estimates dwells in various receiver functions, e.g., for

decoding of data symbols, adaptive modulation and coding

(AMC), turbo decoding, and power control algorithms. SNR

estimation also finds application in many areas of cellular

as well as in wireless sensor networks (WSNs). In a WSN,

the estimates of SNR can be used to find the candidate

cooperators in a cooperative communication environment

[1] and [2]. Similarly, they can be used to find the one-hop

neighbors of a wireless sensor node [3].

In WSNs, the wireless sensor nodes are highly energy

constrained and such a modulation scheme is desirable, which

is relatively power efficient and offers less receiver complexity.

Non-coherent frequency shift keying (NCFSK) fulfills both

the criteria; power efficiency at the transmitter side by having

constant signal envelope and less receiver complexity because

of squared envelope detection. This scheme does not require

sophisticated signal processing algorithms based on phased-

locked loops (PLLs) for carrier phase synchronization. Fur-

thermore, in data fusion applications of WSNs, the sensor

nodes transmit their data to a central facility or base station

[4], which is generally equipped with multiple antennas. Each

transmitted symbol from a node follows a separate path to each

antenna and hence undergoes independent fading. The SNR

of the received symbol on the multiple co-located antennas

is estimated at the receiver. This SNR information is used in

adaptively assigning the modulation and coding scheme to be

used at the transmitter and other receiver functions. Therefore,

in this paper, we consider the problem of estimating SNR in

a communication system employing NCFSK modulation over

Rayleigh fading channels with diversity combining. Because

of the non-coherent nature of modulation scheme, equal gain

combining (EGC) is employed at the receiver side to combine

the data arriving in all the receiver branches [5].

Several authors have worked on designing SNR estimators

for different environments and receiver architectures. Most of

the work has been done on the derivations of M-ary phase shift

keying (MPSK) and frequency shift keying (MFSK) estima-

tors. For example, in [6], the authors have analyzed BPSK and

8-PSK SNR estimators using different estimation techniques

and have presented the comparison between the performance

of each of them considering real and complex additive white

Guassian noise (AWGN) channels, respectively. In [7], the

authors have designed an SNR estimator using the method

of moments (MoM) for the case of BPSK modulated signals

in Nakagami-m fading channels with receiver diversity. In [8]

and [9], the authors have designed SNR estimators for non-

coherent BFSK and MFSK receivers, respectively, over fading

channel in the presence of AWGN using maximum likelihood

estimation (MLE) and data statistics approach. Moreover,

different scenarios have been taken into account, i.e., data

aided (DA), non-data aided (NDA) and method of moments

(MoM) and also their comparison is presented in terms of

their performance. Authors in [10] designed SNR estimators

for a slow fading environment. Carrier frequency offset effects

have been taken into consideration while estimating SNR in

[11], [12]. However, in all of these works the approach is only

valid for a single-input single-output (SISO) system, which is

not sufficient for a WSN where multiple links are formed to

transmit the data and constitutes the main motivation behind

this study.

In this paper, we consider a single-input multiple-output

(SIMO) system, i.e., we will take into account the diversity

at the receiver. We derive ML estimator for the cases of data

aided and non-data aided scenarios. Then we compare their

performances in the terms of normalized mean squared error

(NMSE) and the Cramer-Rao bound (CRB).

The rest of the paper is organized as follows. Section II

of the paper explains the system model under consideration.
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technique are presented in Section III. Section IV derives the

Cramor-Rao bound (CRB), and in Section V, we discuss the

simulation results for both estimators and their performance in

terms of mean squared error and CRB. At the end, conclusions

are provided in Section VI.

II. SYSTEM MODEL

In this paper, we are considering a SIMO communica-

tion system as shown in Fig. 1 having single transmit and

L co-located receive antennas. Non-coherent MFSK is em-

ployed where each transmitted symbol undergoes independent

Rayleigh fading and is corrupted by AWGN.

Fig. 1: SIMO communication system with L co-located receiver
antennas

The block diagram of a non-coherent BFSK receiver with L
diversity branches and envelope detection is shown in Fig. 2.

Each diversity branch is further divided into M receiver sub-

branches corresponding to the MFSK receiver. For the case

of Fig. 2, we are considering non-coherent BFSK receiver, so

every ℓth diversity branch is further divided into two receiver

sub-branches.

We get L copies of the transmitted symbol at the receiver.

The copy of the signal acquired on the ℓth diversity branch at

any time instant i after correlator is given by

vℓ,i = siαℓ,i + nℓ,i, (1)

where ℓ={1, 2, .., L} and i={1, 2, ..,K} represent the diversity

branch and time index, respectively. Each of vℓ,i, si, and nℓ,i

are independent vectors with a dimension of M × 1, where

vℓ,i = {vℓ,1,i, vℓ,2,i, ..., vℓ,M,i}. The vℓ,m,i corresponds to the

ℓth received copy of the transmitted symbol in the mth receiver

sub-branch (1 ≤ m ≤ M) at the ith time instant. In (1),

si = [0, 0, ..., 0, 1, 0, ..., 0]T is the vector transmitted from

the MFSK transmitter, where 1 at the mth (1 ≤ m ≤ M)
position corresponds to the transmitted frequency and 0 is

set in all the remaining (M − 1) positions. Fading in every

ℓth diversity branch is represented by αℓ,i. Since Rayleigh

fading is considered, so the elements of αℓ,i are drawn from

a complex Gaussian distribution, i.e., αℓ,i ∈ CN(0, S), where

S is the variance of fading. AWGN in the symbol present

in the mth receiver sub-branch of the ℓth diversity branch

and at the ith time instant is represented by nℓ,m,i ∈ nℓ,i.

Elements of nℓ,i belong to complex Gaussian distribution, i.e.,

nℓ,m,i ∈ CN(0, N), where N is the noise power.

From Fig. 2, we can see that vℓ,m,i will pass from the

envelope detector; Thus, xℓ,m,i = | vℓ,m,i |
2
. Thereafter, equal
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Fig. 2: Receiver structure of the system employing BFSK modulation
and EGC

gain combining (EGC) is employed on the data xℓ,m,i present

in all the M sub-branches of L antennas of the receiver to get

the vector ri = [r1,i, r2,i, ..., rM,i]
T . In Fig. 2, data from first

sub-branch of every antenna has been summed up to get a

symbol r1,i =
∑L

ℓ=1 xℓ,1,i and similarly data from the second

sub-branch of every antenna has been summed up to get the

second symbol r2,i =
∑L

ℓ=1 xℓ,2,i. As we are considering

non-coherent BFSK in Fig. 2, so we will be left with a (2×1)
vector i.e., ri = [r1,i, r2,i]

T . In this paper, we are interested

in estimating average SNR from [r1 r2 r3 ... rK]T, which

is acquired after the post-detection combining of the K
received data symbols. This is done for several estimation

schemes, which will be discussed in the forthcoming section.

III. ESTIMATION TECHNIQUES

This section contains the derivation of data aided (DA) and

non-data aided (NDA) estimator expressions using maximum

likelihood (ML) estimation technique.

A. Data Aided MLE

The objective here is to estimate the average SNR of K
consecutively received symbols. Hence without losing gener-

ality, we set si = [1 0 0... 0]T for each of the K symbols. On

the basis of this assumption, the data is received in the first

branch of receiver and all the remaining (M − 1) branches

contain noise. As we are considering postdetection combining,

the data to be used is rm,i ∈ ri = [r1,i, r2,i, ..., rM,i]
T .

Because of the fact that αℓ,i and nℓ,m,i are Complex Gaussian

random variables, so the first symbol from every diversity

branch, i.e., xℓ,1,i = | αℓ,i + nℓ,m,i |
2
, follows an exponential

distribution having mean of E| αℓ,i |
2+E| nℓ,m,i |

2. Moreover,

the data received in the first branch of receiver is he sum of

L-exponentially distributed terms, i.e., x1,1,i+x2,1,i...+xL,1,i

having same mean and will result in r1,i to be gamma

distributed. The probability density function (PDFs) of the



received pilot symbols ri = [r1,i, r2,i, ..., rM,i]
T , are given

as

pr1,i (r1,i) =
(S +N)

−L
(r1,i)

L−1

(L− 1)!
exp

(

−r1,i
S +N

)

, (2)

and

prm,i
(rm,i) =

(N)
−L

(rm,i)
L−1

(L− 1)!
exp

(

−rm,i

N

)

,

{m = 2, ...,M} . (3)

The joint PDF of the received vector, ri, becomes

pri (rm,i) =
(S +N)

−L
(N)

−L(M−1)∏M
m=1 (rm,i)

L−1

((L− 1)!)M−1

×exp

(

−r1,i
S +N

−

M
∑

m=2

rm,i

N

)

.

(4)

Hence the log-likelihood function of K received symbols can

be found as

Λri
(rm,i;S,N) = −KL ln(S +N)−KL(M − 1) ln(N)

+ (L− 1)

K
∑

i=1

M
∑

m=1

(rm,i)M ln((L− 1)!)−
1

S +N

K
∑

i=1

r1,i

−
1

N

K
∑

i=1

M
∑

m=2

(rm,i). (5)

Using the fact that ML estimate of the ratio of two param-

eters is equal to their individual estimates, we can write the

estimated SNR expression as

γ̂DA =
ŜML

N̂ML

. (6)

For this purpose, we want to extract the parameters of our

interest, i.e., signal power ŜML and noise power N̂ML from

log-likelihood expression. Differentiating (5) with respect to

S and N individually and setting these derivatives equal to

zero results in ŜML and N̂ML. Putting these values in (6) and

solving, we will get the data aided estimates of SNR as

γ̂DA =
(M − 1)

∑K
i=1 r1,i −

∑K
i=1

∑M
m=2 rm,i

∑K
i=1

∑M
m=2 rm,i

. (7)

B. Non-Data Aided MLE

In NDA, we have no knowledge about the transmitted

data symbol. So we assume that all transmitted symbols

have equal priori probabilities. The conditional PDF of the

received symbol given a 1 at the nth position was transmitted

is

prn,i
(rn,i|sn = 1) =

(S +N)
−L

(rn,i)
L−1

(L− 1)!
exp

(

−rn,i
S +N

)

,

(8)

and the conditional PDF of the received symbol given a 0 at

the nth position was transmitted becomes

prn,i
(rn,i|sn = 0) =

(N)
−L

(rn,i)
L−1

(L− 1)!
exp

(

−rn,i
N

)

. (9)

Now there are M different possibilities of the received symbol.

We can express the joint unconditional PDF of the M received

symbols using the law of total probability as

pri (ri) = (
1

M
(S +N)−L(N)−L

M
∏

m=1

rm,i
(L−1))×







exp(
−r1,i
S +N

)−

M
∑

m=2,m 6=1

rm,i

N



+

....+



exp(
−r2,i
S +N

)−

M−1
∑

m=1,m 6=M

rm,i

N







 , (10)

The above equation is very complex to solve, so simplifying

the above expression by factoring the term exp(
−

∑M
m=1

rm,i

N ),
we get

pri (ri) =
1

M
(S +N)−L(N)−L

M
∏

m=1

(rm,i)
L−1

exp(
−
∑M

m=1 rm,i

N
)

[

M
∑

m=1

exp(−rm,iψ)

]

, (11)

where ψ = 1
S+N − 1

N . We get the log-likelihood function as

Λri
(rm,i;S,N) = −K ln(M)−KL ln(S+N)−KL(M−1)

ln(N) + (L− 1)

K
∑

i=1

M
∑

m=1

ln(rm,i) +

K
∑

i=1

M
∑

m=1

rm,i

N
+

K
∑

i=1

ln

[

M
∑

m=1

exp(−rm,iψ)

]

. (12)

We can have Ŝ and N̂ by differentiating log-likelihood

function in (12) with respect to S and N , exactly in the same

way as done for the data aided case in the previous section.

We have the following expression

Ŝ +MN̂ =
1

KL

K
∑

i=1

[

∑M
m=1 rm,i exp(−rm,iψ)
∑M

m=1 exp(−rm,iψ)

]

.(13)

Finding a closed-form solution of the above non-linear expres-

sion is prohibitive, so we approximate it to a feasible form.

Let us consider this expression for the case of M = 2, i.e., let

A =

K
∑

i=1

[

∑2
m=1 rm,i exp(−rm,iψ)
∑2

m=1 exp(−rm,iψ)

]

,

A =

K
∑

i=1

r1,i exp(−r1,iψ) + r2,i exp(−r2,iψ)

exp(−r1,iψ) + exp(−r2,iψ)
. (14)

It can be observed for the case of very high SNR, i.e., S >>

N , ψ =
[

1
S+N − 1

N

]

reduces to ψ ∼= −1
N , Thus the above

approximation becomes



A =

K
∑

i=1

r1,i exp(r1,i/N) + r2,i exp(r2,i/N)

exp(r1,i/N) + exp(r2,i/N)
, (15)

Rearranging the above equation, we get

A =

K
∑

i=1

r1,i

1 +
exp(r2,i/N)
exp(r1,i/N)

+
r2,i

1 +
exp(r1,i/N)
exp(r2,i/N)

. (16)

Among [r1,i, r2,i], only one branch will contain signal and

the other will contain noise. Let us consider that the r1,i
contains signal. For the case of high SNR, S >> N ,

(1 +
exp(r2,i/N)
exp(r1,i/N) ) → 1 and (1 +

exp(r1,i/N)
exp(r2,i/N) ) → ∞. Thus the

above expression reduces to

A ≈

(

K
∑

i=1

max
m=1,2,3,..,M

rm,i

)

. (17)

Using this expression in (13) and solving, we get the expres-

sion for estimated noise power N̂ as

N̂ =
(M − 1)

∑M
m=1 rm,i −M

∑M
m=1

∑K
i=1 rm,i

∑M
m=1

∑K
i=1 rm,i +

∑K
i=1 maxm rm,i

+

M
∑K

i=1 maxm rm,i
∑M

m=1

∑K
i=1 rm,i +

∑K
i=1 maxm rm,i

, (18)

and the estimate of signal to noise ratio for NDA is given as

γ̂NDA =
−
∑M

m=1 rm,i +M
∑K

i=1 maxm rm,i
∑M

m=1 rm,i −
∑K

i=1 maxm rm,i

, (19)

where, rm,i =
∑L

ℓ=1 xℓ,m,i.

IV. CRAMER-RAO LOWER BOUND

In order to evaluate the performance of the derived esti-

mators, we find the Cramer-Rao bound (CRB), which is the

lower bound on the variance of any estimator. In other words, it

states that the variance of the derived estimator must be greater

than or equal to this bound. We have derived the CRB for the

data aided (DA) case and compared it with the normalized

mean squared error (NMSE) to judge the performance of

estimator. Although we can have CRB for non-data aided case

as well, however as the benchmark performance is given by

DA method, we use its CRB to evaluate the performance of

the derived estimators. We have two unknown parameters, i.e.,

signal power, S and the noise power, N . We consider the

unknown vector parameter θ=[S N ]
T

. We have

CRB =
∂g(θ)

∂θ
I
−1(θ)

∂g(θ)

∂θ

T

, (20)

where g(θ) is a function of parameter θ and I is the Fisher

information matrix. Taking partial derivative of g(θ) = S
N

with respect to θ = [S N ]
T

, we get

∂g(θ)

∂θ
=

[

1

N

−S

N2

]

, (21)
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Fig. 3: Effect of increasing M on NMSE for 100 symbol-long packet
for the DA estimator for L = 5.

The Fisher information matrix (FIM), I(θ) is given by

I(θ) =





−E

(

∂2ΛDA

∂S2

)

−E

(

∂2ΛDA

∂SN

)

−E

(

∂2ΛDA

∂NS

)

−E

(

∂2ΛDA

∂N2

)



 , (22)

where E is the expectation operator. Solving the elements of

the above matrix, we get

I(θ) =

[ KL
(S+N)2

KL
(S+N)2

KL
(S+N)2

(

KL
(S+N)2 + KL(M−1)

N2

)

]

. (23)

Putting the values of Equations (23) and (21) in (20), we get

the expression for CRB as

CRBDA =
M

KL(M − 1)
(γ + 1)2. (24)

V. SIMULATION RESULTS

In this section, the performance of the estimators designed

in the previous sections is presented in terms of normalized

mean squared error (NMSE), which is given as

NMSE(γ̂) = E
{(γ − γ̂)2}

γ2
, (25)

where γ and γ̂ being the true and estimated SNR, respectively.

A perfect estimator is the one which always results in the

least difference between estimated value and true value of

the unknown parameter. Different trends of the NMSE versus

SNR have been analyzed for several parameters, i.e., diversity

branches, L, receiver sub-branches, M and the number of

symbols K. All the results presented in this section are

averaged over 25,000 trials of simulations.

Fig. 3 shows the NMSE vs. SNR for the DA estimator

for the case of L = 5, i.e., five diversity branches and for

K = 100 symbols for various values of M . It can be observed

from the figure that the NMSE is decreased as the receiver
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Fig. 4: Effect of increasing diversity branches on data aided estimator
for K = 100 symbols and M = 2.

sub-branches, M , are increased. This is due to the fact that

by adding more and more receiver sub-branches (M), the

number of data samples go on increasing, forming a large

data set. Thus, the sample mean of the large number of data

samples converges towards the actual mean, resulting in a

better performance of the estimator. Same trend has been

depicted by the NDA estimator, but is not shown here to avoid

repetition.

Fig. 4 presents the effect of increasing diversity branches, L
on NMSE values of the DA estimator for K = 100 symbols.

It can be seen that by increasing the value of L, the NMSE

decreases. This decrease in NMSE is the consequence of

increased number of branches of the data to be estimated.

Therefore, we can summarize that increase in the values of

both, the diversity branches, L and receiver sub-branches, M ,

serves the same purpose of increased data samples, thereby

lowering the NMSE and improved estimator performance.

It can however, be observed from Fig. 4 that the rate of

NMSE reduction is large, when branches are increased from

L = 5 to L = 10. This shows the diminishing returns behavior

of the diversity gain on NMSE. Performance comparison

curves for the DA and the NDA estimators have been shown in

Fig. 5 for L = 5 and K=100 symbols. Also the CRB derived

for DA estimator has been plotted. For low SNR region, the

NDA estimator gives large NMSE as compared to the DA

estimator. Larger NMSE for the case of NDA in low SNR

region can be attributed to the use of approximations derived

for high SNR region (14)-(17). The difference between the

error of DA and NDA estimator in the low SNR region goes on

decreasing as the number of diversity branches are increased.

Although not shown here but this difference is high for the

cases of L = {1 → 4} in comparison with L = 5 that

is shown in Fig. 5. Moreover, it can also be observed that

the curve for DA is exactly giving the same NMSE values

throughout the SNR region as that of the CRB evaluated for

it. This points towards the fact that DA estimator is showing

the minimum possible variance and the performance margin is
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Fig. 5: NMSE for K = 100 symbols, M = 2 and L = 5.
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Fig. 6: NMSE contours for K = 100 to 1000 symbols, M = 4 and
L = 4.

high. This motivates the use of DA estimator in decode-and-

forward (DF)-based wireless sensor networks [14]–[18], where

the precondition for forwarding the packet is to successfully

decode it. The decoding is generally done by using cyclic

redundancy check (CRC), and if the packet is decodable, the

entire packet can be treated as pilot symbols to perform SNR

estimation, which can then be used in various algorithms such

as [1], [14], [15].

NMSE contours are presented in Fig. 6 for L = 4 and

M = 4 with SNR shown on the x-axis and packet lengths

(symbol size) at the y-axis. NMSE decreases with an increase

in both the packet length and the SNR. So, for such situation

where small NMSE is needed, larger length packets should

be chosen and vice versa, e.g., we can see form the figure

that less than 2% error can be achieved if K ≥ 200 at the

SNR values≥ 8dB.



VI. CONCLUSION

Data aided (DA) and non-data aided (NDA) signal-to-noise

ratio (SNR) estimator expressions have been derived using

maximum likelihood estimation (MLE) technique in a NC-

MFSK receiver. Receiver diversity has been taken into account

for the case of Rayleigh fading channel and AWGN. For

comparison purposes, Cramer-Rao bound (CRB) for data aided

case has been evaluated. On the basis of analysis done in the

previous sections, we have found that by adding the diversity

in the system, the performance of estimator is increased

for both DA and NDA estimators. However, DA estimator

performs best in all the cases as compared to NDA because

of an approximation used in the NDA scheme to get a closed-

form expression. Difference between the performances of

both the estimators is large in low SNR regions. However,

by increasing the diversity branches, this difference can be

minimized. Moreover, the NDA estimator performs equally

well for higher order diversity cases by approaching the

performance of DA estimator in the higher SNR region.
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