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The Benefit of Co-Locating Groups of Nodes in
Cooperative Line Networks

Syed Ali Hassan, Member, IEEE, and Mary Ann Ingram, Senior Member, IEEE

Abstract—We consider two topologies for the deployment
of nodes in a one-dimensional network. The first deployment
scenario considers nodes equally spaced on a line, while the
second topology has groups of co-located nodes, such that the
groups are equally spaced on the line, and such that the two
networks have equal average density. In both linear topologies,
nodes transmit cooperatively, as opportunistic large arrays, in
each hop. The difference is only that in the first topology, the
cooperators have disparate path loss, while in the second they do
not. We study the multi-hop transmission for both cases, where
the one hop distance remains the same for both the topologies. We
model both the scenarios with a quasi-stationary Markov chain
and show that the co-located groups deployment gives better
performance, especially for higher path loss exponents.

Index Terms—Cooperative transmission, stochastic modeling,
wireless sensor networks.

I. INTRODUCTION

MULTI-hop transmission is desirable to keep the cost
down in large wireless sensor networks, by employing

fewer gateway nodes. However, multi-hop networks suffer
from long delays and poor reliability. In order to boost the
performance of multi-hop networks, cooperative transmission
strategies can be applied to increase the reliability of the
system with better latency properties. A promising technique
employing multi-hop transmission is the opportunistic large
array (OLA) [1], where all nodes that can correctly decode a
message immediately retransmit it at the same time, without
coordination with other relays, thereby providing transmit
diversity. OLA broadcasting is known to have advantages such
as range extension [2], fewer hops, and energy efficiency [3].
There are many uncertainties that influence exactly which
radios participate in an OLA. Most previous works use the
continuum assumption, where the number of nodes in a given
area goes to infinity keeping the total transmit power per
unit area constant [4]. However, practical OLA networks
have a finite density of nodes, and the finite density analysis
differs considerably with that of asymptotic analysis under
the continuum assumption. In [5], the authors theoretically
analyzed a one-dimensional network with finite density, where
the inter-node distance is kept constant. They derived upper
bounds on the coverage of this network under the effects of
path loss and Rayleigh fading.

In this paper, we characterize the performance of two
different topologies for a line network. These topologies can
be considered a precursor to a strip shaped network or a
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Fig. 1. Equi-distant and co-located topologies in line network.

uni-cast cooperative route for the finite density case. Typical
applications consistent with strip networks include structural
health monitoring of bridges, fault recognition system in trans-
mission lines, and sensors employed in hallways of buildings
in a linear fashion. The topology would also be consistent
with a plastic communication cable, in which small wireless
relays are embedded along a cable made of a non-conducting
material [6]. Such plastic wires might find applications in areas
of high electric fields.

In some applications, the equi-distant node topology, as
in the top part of Fig. 1, might be attractive, owing to the
distributed nature of sensors that can monitor a large area at
many different locations. However, the cooperating nodes in
this topology will necessarily have disparate path loss, leading
possibly to a lower effective diversity order. Therefore, we
consider a second topology in which each set of cooperating
nodes are placed in a co-located group as shown in the
bottom of Fig. 1. Because of size and cost constraints, having
an antenna array on a single node is not practical. Thus,
cooperative diversity, a realization of a multi-antenna array
using a cluster of single-antenna devices, can be used as a
solution for mitigating fading in wireless multi-hop networks.
With a set of transmitters spaced at least a half-wavelength
apart, we can establish a cooperative link to the receiver,
which receives independent copies of source signals through
orthogonal fading channels and tries to decode the message.
The diversity in this system can be obtained through space
time coding (STC) or using frequency diversity by transmitting
the message over orthogonal frequencies. Although a “hop”
in our scheme is strictly a multiple-input multiple-output
(MIMO) link because it involves simultaneous transmission
between one cluster of antennas to another cluster of antennas,
this scheme is different from a conventional MIMO scheme as
there is no joint detection process from all these receivers, nor
can we predict with certainty about the number of transmitters
in any particular hop.

To fairly compare the two topologies, we restrict the groups
of candidates for cooperation in a given hop to have the same
number of nodes and have the same centroid, as shown in Fig.
1. Therefore, the only difference between the two topologies
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is that the cooperating nodes in equi-distant topology have
disparate path losses, while cooperating nodes in the co-
located groups topology do not. Our results will show that
the co-located groups topology always performs better, but the
magnitude of improvement depends on the system and channel
parameters. We model the transmissions in both the cases
with a quasi-stationary Markov chain with an absorbing state,
where the absorbing state describes all receivers in a hop not
being able to decode and the transmissions stop propagating.

II. NETWORK MODEL

For the equi-distant nodes topology, consider a line of
nodes where adjacent nodes are a distance 𝑑 apart from
one another as shown in the top of Fig. 1. The nodes are
partitioned, as illustrated by the vertical dashed lines in Fig.
1, into levels or groups of 𝑀 nodes each. Each group is
indexed as 𝑛 − 1, 𝑛, 𝑛+ 1, ... etc. We assume that the nodes
transmit synchronously in OLAs or levels, and that a hop
occurs when nodes in one level, e.g., 𝑛, transmit a message
and at least one node in the next level, e.g., 𝑛 + 1, is able
to decode the message. Exactly one time slot later, all the
nodes that just decoded the message for the first time relay the
message. Correct decoding is assumed when a node’s received
signal-to-noise ratio (SNR), from the previous level only, is
greater than or equal to a modulation-dependent threshold, 𝜏 .
We assume that there is sufficient transmit synchronization
between the nodes of a level, such that all the nodes in a level
transmit to the next level at the same time. In other words,
the transmissions only occur at discrete instants of time 𝑛,
𝑛+ 1, ... such that the hop number and the time instants can
be defined by just one index 𝑛.

We assume equal transmit power, 𝑃𝑡, of all nodes. Let
ℕ𝑛 := {1, 2, ...,𝒦𝑛}, where 𝒦𝑛 is the cardinality of the set
ℕ𝑛, sup𝑛 𝒦𝑛 ≤ 𝑀 , to be the set of indices of those decode-
and-forward (DF) nodes that decoded the signal perfectly
at the time instant (or hop) 𝑛. For example, from Fig. 1,
ℕ𝑛 = {1, 2} and ℕ𝑛+1 = {3}. The received power at the
𝑗th node at the next time instant 𝑛+ 1 is given by

𝑃𝑟𝑗(𝑛+ 1) =
𝑃𝑡

𝑑𝛽

∑
𝑚∈ℕ𝑛

𝜇𝑚𝑗

(𝑀 −𝑚+ 𝑗)𝛽
, (1)

where 𝜇𝑚𝑗 is the exponential channel gain (corresponding to
flat Rayleigh fading) from Node 𝑚 in the previous level to
Node 𝑗 in the current level and 𝛽 is the path loss exponent.

For the co-located groups topology, a group consists of 𝑀
co-located nodes, such that the inter-group distance is 𝐷 ≈
𝑀𝑑, and hence the inter-node distance in each group can be
ignored. Thus, the received power at the 𝑗th node at time 𝑛+1
is given as 𝑃𝑟𝑗(𝑛+ 1) = 𝑃𝑡

𝐷𝛽

∑
𝑚∈ℕ𝑛

𝜇𝑚𝑗 .

A. Simplified One-Hop Analysis without Fading

In this subsection, we consider a simplified model that
enables the application of Jensen’s Inequality, in an effort
to provide some insight into the results derived in the next
section for the more complex model. Suppose for the 𝑛th hop,
we are given that exactly two transmitters are active, but we
don’t know which ones they are. To simplify analysis, let us
assume that the transmitters are placed independently in any

position within the cluster with equal probability; therefore
they could be co-located (with half wavelength spacing).
Furthermore, suppose we select a receiver at random from
the receiver cluster in this hop. Let 𝜉𝑖 be the distance between
the transmitter 𝑖 and the receiver. In the equi-distant case, 𝜉𝑖
is a random variable with 𝔼 {𝜉} = 𝐷. Next assume there is
no fading or 𝜇𝑚𝑗 = 1. Then under these assumptions and
conditions, the distances are the only random variables and
the expected received power at the randomly selected receiver
from both transmitters is 𝔼 {𝑃𝑟𝑗(𝑛+ 1)} = 2𝑃𝑡𝔼

{
1
𝜉𝛽

}
.

In the co-located topology, the distance is non-random, so
under these conditions and assumptions, 𝔼 {𝑃𝑟𝑗(𝑛+ 1)} =
𝑃𝑟𝑗(𝑛+ 1) = 2𝑃𝑡

𝐷𝛽 = 2𝑃𝑡

(𝔼{𝜉})𝛽 . Using Jensen’s Inequality,

1

(𝔼 {𝜉})𝛽
≤ 𝔼

{
1

𝜉𝛽

}
. (2)

In words, the average power accumulated at a point from
distributed nodes is higher than from a group of nodes located
at the centroid position. However, in the presence of fading,
the outage probability (i.e., the probability that the power
drops below a threshold) is more important than the mean
power received. It can be shown (not here, because of space
constraints) that with Rayleigh fading, the outage probability,
ℙ (𝑃𝑟𝑗(𝑛+ 1) ≤ 𝜏), is lower (i.e., “better”) for the co-located
case than for the equi-distant case, because small values
of 𝑃𝑟𝑗(𝑛 + 1) are more likely to happen when there are
path loss disparities between the independently faded copies.
The analysis in the next sections treats the more general
complicated case, which includes Rayleigh fading, does not
allow two transmitters in the same place for the equi-distant
topology, and for which the number of transmitters is random.
This analysis will prove that the co-located case gives a lower
outage probability than the equi-distant case.

III. THE STATISTICAL MODEL

The state of each node is characterized by a binary indicator
function such that for 𝑗th node at time 𝑛, 𝕀𝑗(𝑛) = 1 represents
successful decoding and 𝕀𝑗(𝑛) = 0 represents a failure in
decoding. Thus the decision of all nodes in Level 𝑛 are given
as 𝒳 (𝑛) = [𝕀1(𝑛), 𝕀2(𝑛), ..., 𝕀𝑀 (𝑛)], which depends only upon
the transmission of the previous level, making 𝒳 is a mem-
oryless Markov process. Due to discrete time slots, 𝒳 is the
discrete-time Markov chain such that 𝒳 = {0} ∪ 𝒮, where 𝒮
is a finite transient irreducible state space, corresponding to all
the states in which at least one node in the group is able to de-
code, and 0 is the absorbing state. If we remove the transitions
to and from the absorbing state, then the transition probability
matrix, P, for the Markov chain, 𝒳 , is right sub-stochastic and
irreducible with dimension (2𝑀 − 1)× (2𝑀 − 1). Considering
these properties, we invoke the Perron-Frobenius theorem [7],
which says that there exists a maximum eigenvalue, 𝜌, and
an associated left eigenvector u with strictly positive entries
such that uP = 𝜌u. Since ∀𝑛, ℙ {𝒳 (𝑛) = 0} > 0, eventual
absorption is certain, and the limiting distribution, also called
the quasi-stationary distribution, of the Markov chain is given
as lim𝑛→∞ ℙ {𝒳 (𝑛) = 𝑗∣𝑇 > 𝑛} = 𝑢𝑗 , 𝑗 ∈ 𝒮, where
𝑇 = inf {𝑛 ≥ 0 : 𝒳 (𝑛) = 0} denotes the end of survival time.
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A. The Transition Probability Matrix

For the 𝑘th node in the 𝑛th level, the conditional probability
of being able to decode is given as

ℙ {𝕀𝑘(𝑛) = 1∣𝜁} = ℙ {𝛾𝑘(𝑛) > 𝜏 ∣𝜁} , (3)

where 𝛾𝑘(𝑛) = 𝑃𝑟𝑘(𝑛)/𝜎
2
𝑘 is the received SNR at 𝑘th node,

and 𝜎2
𝑘 is the noise variance of the 𝑘th receiver. We denote

the event {𝒳 (𝑛− 1) ∈ 𝒮} := 𝜁, implying that the previous
state is a transient state. Similarly, the probability of outage
or the probability of 𝕀𝑘(𝑛) = 0 is 1−ℙ {𝛾𝑘(𝑛) > 𝜏 ∣𝜁}, where

ℙ {𝛾𝑘(𝑛) > 𝜏 ∣𝜁} =

∫ ∞

𝜏

𝑝𝛾𝑘∣𝜁(𝑦)𝑑𝑦, (4)

and 𝑝𝛾𝑘∣𝜁(𝑦) is the conditional probability density function
(PDF) of the received SNR at the 𝑘th node conditioned
on State 𝒳 (𝑛 − 1). Here, we divide our analysis into two
subsections, one for each of the topologies.

1) Transition Matrix for the Equi-Distant Topology: The
received power at a certain node is the sum of the finite powers
from the previous-level nodes, each of which is exponentially
distributed with parameter 𝜆𝑘, 𝑘 = 1, 2, ...,𝒦𝑛. Thus the PDF
of received power in this case is given by hypoexponential
distribution [8], which is valid only if 𝜆𝑘 ∀𝑘 are different. For
𝑀 nodes in a level, consider the index sets corresponding to
the 𝑖th state at time 𝑛 as
ℕ

(𝑖)
𝑛 = {1, 2, ...,𝒦𝑛} and ℕ

(𝑖)

𝑛 = {1, 2, ...,𝑀} ∖ℕ(𝑖)
𝑛 ,

to be the sets of those nodes which are 1 and 0, respectively.
Then the one step transition probability from States 𝑖 to 𝑗 is
given as

ℙ𝑖𝑗 =
∏

𝑘∈ℕ
(𝑗)
𝑛+1

(
𝜓(𝑘)
𝑚

) ∏
𝑘∈ℕ

(𝑗)
𝑛+1

(
1− 𝜓(𝑘)

𝑚

)
, (5)

where

𝜓(𝑘)
𝑚 =

∑
𝑚∈ℕ𝑛(𝑖)

𝐶(𝑘)
𝑚 exp

(
−𝜆(𝑘)𝑚 𝜏

)
,

𝜆
(𝑘)
𝑚 =

𝑑𝛽(𝑀−𝑚+𝑘)𝛽𝜎2
𝑚

𝑃𝑡
, and 𝐶

(𝑘)
𝑚 =

∏
𝜁 ∕=𝑚

𝜆
(𝑘)
𝜁

𝜆
(𝑘)
𝜁 −𝜆

(𝑘)
𝑚

.

2) Transition Matrix for Co-Located Groups Topology:
In this case, the received power at a certain node in a
group is the sum of the finite powers from the previous-
level nodes, where the power received from each transmitting
node is exponentially distributed with the same parameter
�̃� = 𝐷𝛽𝜎2

𝑘/𝑃𝑡. Since all the nodes are co-located, and there
are no disparate path losses that affect the parameter of the
exponential distribution, the PDF of the received power at the
𝑘th node in a cluster is Gamma distribution [8] given as

𝑝𝛾𝑘∣𝜁(𝑦) =
1

(𝒦𝑛 − 1)!
�̃�𝒦𝑛𝑦(𝒦𝑛−1) exp

(
−�̃�𝑦

)
. (6)

Evaluating (4) to get the conditional success of the 𝑘th node,
we have

ℙ {𝛾𝑘(𝑛) > 𝜏 ∣𝜁} =
1

(𝒦𝑛 − 1)!
Γ(𝒦𝑛, �̃�𝜏), (7)

where Γ(𝒦𝑛, �̃�𝜏) is the upper incomplete Gamma function.
Let Φ(𝑘) := ℙ {𝛾𝑘(𝑛) > 𝜏 ∣𝜁}, then after some manipulation,
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Fig. 2. Behavior of eigenvalues in the co-located topology.
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Fig. 3. Eigenvalue differences between two topologies; 𝛽 = 2.

(7) becomes

Φ(𝑘) = exp
(
−�̃�𝜏

)𝒦𝑛−1∑
𝑝=0

(
�̃�𝜏

)𝑝

𝑝!
. (8)

Then the one step transition probability for going from State
𝑖 to 𝑗 is same as given in (5) with 𝜓(𝑘)

𝑚 replaced with Φ(𝑘).

IV. RESULTS AND PERFORMANCE ANALYSIS

In this section, we show the relative performance of the
two topologies in terms of the one-step success probability
of making a successful hop, which indicates that at least one
node in the forward level has decoded the message success-
fully. This success probability, which is the Perron-Frobenius
eigenvalue of the matrix, depends upon many parameters such
as transmit power, inter-node or inter-group distance, path
loss exponent, etc. Thus infinite solutions exist of the quasi-
stationary distribution. To reduce the design space, we define
Υ = 𝑃𝑡

𝜏𝜎2 as the normalized SNR with respect to the threshold
𝜏 and call this the SNR margin. Note that in the simulation
results, we have used 𝑑 = 1, which implies that Υ, in the
equi-distant topology, can be thought of as the SNR margin
from a single transmitter 𝑑 distance away.

We denote the one step success probability for the equi-
distant topology as 𝜌𝑑 and for the co-located groups topology
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Fig. 4. Eigenvalue differences between two topologies; 𝛽 = 3.
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Fig. 5. Eigenvalue differences between equi-distant and SISO topologies.

as 𝜌𝐷 . Fig. 2 shows the behavior of 𝜌𝐷 as a function of Υ for a
path loss exponent of 2. It can be observed that for a specific
cluster size, the success probability increases monotonically
with the increase in SNR margin. It can be further noticed
that if we increase the cluster size, an additional SNR margin
is required to get the same success probability as that of a
smaller sized cluster. This is because by increasing the cluster
size, the inter-group distance also increases, which requires
more SNR margin to get the same quality of service.

Fig. 3 shows the difference between the success probabil-
ities of co-located and equi-distant topologies for the path
loss exponent of 2. We observe that the maximum difference
increases as we increase 𝑀 . However, this difference domi-
nates at some specific SNR margin values. For instance, if we
require 95% success probability for 𝑀 = 2 in a co-located
case, then from Fig. 2 we require Υ = 8.9𝑑𝐵. However, from
Fig. 3, we notice that at this SNR margin, the equi-distant
topology also performs almost the same since 𝜌𝐷−𝜌𝑑 ≈ 0.027
as indicated by the black circle. For the same packet delivery
ratio for 𝑀 = 5, the co-located case requires Υ = 10.45𝑑𝐵,
however the difference in success probabilities for the two
cases is more significant at 0.1485 at this SNR margin value.

At very high SNR margin, e.g., 12dB, the performance of both

the topologies is again the same, because the path loss effects
are diminished with high transmit power and the partition
constraint. For the larger path loss exponent of 𝛽 = 3, Fig.
4 shows 𝜌𝐷 − 𝜌𝑑, where the black circles show the 95%
success probability for the co-located topology. We observe
a larger difference between the two topologies, especially for
the rightmost dot, which indicates that for 𝑀 = 5, the co-
located case has 0.95 probability of success, while the equally
spaced case has only 0.57 probability of success. We attribute
this difference to the large differences in path loss among the
(up to) 5 equally spaced transmitters.

The topologies that we discussed above are both coopera-
tive. However, it is also interesting to note the performance
of one of the cooperative topologies, for instance, the equi-
distant topology as compared to single-input single-output
(SISO) topology. In particular, we compare the results with
the configuration in which a single node is located in the
centroid of each group and transmits with its power adjusted
according to the expected number of successful nodes in the
other configurations of equi-distant topology. Fig. 5 shows
𝜌𝑑 − 𝜌𝑆𝐼𝑆𝑂, where 𝜌𝑆𝐼𝑆𝑂 is the one-step success probability
for the SISO topology. It can be seen that the cooperative
topology performs better on all the values of SNR margin
and the performance margin for increasing the number of
nodes in equi-distant topology, (which is same as increasing
the distance in SISO topology with increased average power)
is larger. The black circles represent 95% success probability
for the equi-distant topology.

V. CONCLUSION

We considered two different topologies for deploying a
one-dimensional sensor network where the nodes can be
equi-distant from one another or they can be combined to
form co-located groups. We derived the stochastic models
for the transmissions for both topologies and showed that
the co-located topology always outperforms the equi-distant
topology, and the performance difference is larger for larger
path loss exponents.
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