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Abstract—This paper considers a virtual multiple-input single-
output (VMISO) network, where spatially separated single-
antenna radios cooperatively transmit the same data to a desti-
nation. The existing works for the VMISO system assume perfect
synchronization between the nodes. However, in this paper, we
investigate the effects of imperfect timing synchronization on the
performance of this network. For that purpose, we develop a
statistical model for the timing errors and derive the expressions
for the bit error probability (BEP) using this model. The results
indicate that the BEP performance is degraded due to imperfect
timing synchronization and the BEP is dependent upon the
number of radios per cluster, signal-to-noise ratio (SNR) and
the distance disparities between the nodes.

I. INTRODUCTION

Cooperative transmission (CT) has emerged as one of the

most promising techniques to combat the multi-path fading [1].

In a CT-based network, same data is transmitted by spatially

separated radios via uncorrelated fading channels, thereby

providing the transmit diversity. This form of cooperation is

not only suitable for cellular networks but also for sensor and

ad hoc networks. CT has shown considerable advantages in

terms of energy-efficiency [2], opportunistic routing [3] and

range extension [4], which make it very suitable to be used

in wireless sensor networks (WSNs). In WSNs, the sensor

nodes are distributed in an area and a group of nodes transmit

the same message to a destination or another group of nodes.

Thus the data is propagated as virtual multiple-input single-

output (VMISO) until the destination is reached [5]. Although,

this scheme provides diversity and array gains, however, full

diversity can only be achieved if all the replicas of the data

transmitted by a group of nodes are perfectly aligned at the

receiver, i.e., perfect timing synchronization. Most of existing

works in this area rely on the perfect timing synchronization

such that the coherent diversity combining techniques, e.g.,

maximal-ratio combining (MRC) can be used [6] [7].

Several schemes have been proposed for the timing syn-

chronization of the cooperative diversity systems. In [8], a

timing synchronization scheme is presented for a cooperative

network in which a source broadcasts its data to the relays

that cooperatively transmit it towards the destination. In [9],

a receiver timing as well as carrier frequency synchronization

This work was supported by the National ICT R&D Fund, Pakistan.

is proposed for the network resembling to the one assumed

in [8]. The perfect synchronization in a cooperative network

cannot be achieved due to the distributed nature of these

systems, thereby causing the timing and carrier frequency

synchronization errors [8]. Although [8] and [9] present es-

timators for the timing offsets in single-input single-output

(SISO) and the VMISO networks, however, the effects of the

imperfect synchronization are not catered for evaluating the

system performance.

Analytical and simulation results on the performance of the

SISO system in the presence of timing synchronization errors

have been presented in [10]. The analytical expression for bit

error rate (BER) is derived for the binary phase shift keying

(BPSK) modulation with rectangular pulse-shaping and quasi-

static flat Rayleigh fading channel. Moreover, it is assumed

that the variance of the timing synchronization errors is not

dependent on signal-to-noise ratio (SNR). The result shows

that a slight increase in the variance of the timing synchro-

nization error causes a huge increase in the BER of the system.

Moreover, the BER performance of the SISO system with

generalized M-ary phase shift keying (MPSK) under imperfect

phase or timing synchronization is given in [11]. The authors

assume an additive white Gaussian noise (AWGN) channel,

however, the multi-path fading is not considered. Similarly,

the performance of a VMISO system under imperfect timing

synchronization is analyzed in [12]. The authors consider a

VMISO system with transmit beam-forming and Rayleigh

fading channel. The results show that an increase in the timing

error causes a huge deterioration in the BER performance of

the system and the diversity gain can vanish altogether if the

timing error becomes greater than 80% of the symbol duration.

However, the authors do not provide any expression for the

BER of the system in this work.

In a multi-hop cooperative network, the source broadcasts

its data to relays, which cooperatively propagate the data

towards the destination. The broadcast of the data from the

source to the relays can be considered as a SISO system, while

the cooperative transmission by the relays can be viewed as

a VMISO system. In this paper, we intend to analyze and

quantify the effects of timing synchronization errors on the

performance of VMISO system and include SISO network

as a special case. This analysis can be used to analyze

the performance of multi-hop cooperative networks, which is

the main motivation behind this study. We develop a novel

2014 IFIP Wireless Days (WD) 

978-1-4799-6606-6/14/$31.00 ©2014 IEEE   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



h

d

h1

h2

1

2

K

hK

d

d

SISO VMISO

1

Fig. 1: The SISO and VMISO system.

mathematical model to study the statistics of the timing errors

and derive the expressions for the bit error probability (BEP)

of the SISO and VMISO systems operating under imperfect

timing synchronization.

The rest of this paper is organized as follows. In Section II,

the system model is described. Section III derives the statistics

of the timing synchronization error. Section IV provides the

expressions for the worst-case BEP. Section V provides the

analytical and simulation results. The paper is concluded in

Section VI.

II. SYSTEM MODEL

We consider the SISO and VMISO systems shown in Fig. 1.

The SISO system consists of a single transmitter which is d
distance apart from its receiver, while the VMISO system con-

sists of K transmitters and a single receiver. Each transmitting

node in VMISO system is d distance apart from its adjacent

transmitting node. Without the loss of generality we assume

that the receiving node in VMISO is at a distance d apart from

the first transmitting node as shown in Fig. 1. The distance of

receiver from the rest of the transmitting nodes can be simply

found by using the Euclidian geometry. We assume a quasi-

static Rayleigh flat fading channel. Furthermore, the channel

coefficient between any two nodes is assumed to follow a

complex normal distribution with zero mean and σ2
h variance.

The channel coefficients are assumed to be independent and

identically distributed (i.i.d).

Before the transmission of data, each transmitter transmits

its training sequence to the relevant receiver. The receiver

then estimates the timing offset(s) by using either the max-

imum likelihood (ML)-based single timing offset estimation

algorithm for the SISO system or ML-based multiple timing

offset estimation algorithm for the VMISO system given in [8]

and [9]. Afterwards, the receiver pre-synchronizes its clock by

using the estimated timing offset and channel state information

(CSI). After the completion of synchronization and training

phase, the actual data is transmitted.

III. STATISTICS OF TIMING ERROR

In this section, our aim is to find the statistics of the timing

synchronization errors, which occur in the SISO and VMISO

systems. We deal them separately in the following subsections.

A. The timing error in the SISO system

In the case of SISO system, the received signal experiences

a propagation delay, τ , which is proportional to the distance

between the transmitter and the receiver. At the receiver,

the received signal is compensated for the timing offset by

sampling with the receiver clock delayed by τ̂T , where τ̂ is

the the estimated timing offset. This τ̂ is estimated according

to the ML-based estimator for a general SISO system as

described in [8]. Assuming that the estimation is unbiased, we

have τ̂ ∼ N
(

τ, σ2
1

)

, where σ2
1 is the variance of the estimator

for the SISO link. This σ2
1 is inversely proportional to SNR

i.e., σ2
1 ≈ c1(Lo)No/Es, where c1(Lo) is a constant, which

is related to the length of the training sequence, Lo. The Es

is the symbol energy and No is the variance of the AWGN.

The timing error for the SISO link is ǫ = τ − τ̂ . Because

τ̂ ∼ N
(

τ, σ2
1

)

, therefore, ǫ ∼ N
(

0, σ2
1

)

.

B. The timing error in the VMISO system

Contrary to the SISO system, the received signal in a generic

VMISO system consists of a sum of K transmitted signals,

each having a distinct timing offset. We denote the timing

offset corresponding to the signal transmitted by the kth node

by τk. At the receiver, all the timing offsets are estimated by

using the ML-based estimator as described in [8]. In order to

optimally sample the signal, a single sampling time is obtained

by combining all the estimated offsets, {τ̂1, τ̂2, . . . , τ̂K}. The

received signal is sampled by delaying the clock of the receiver

by τ̂T, where

(1)τ̂ =
K
∑

k=1

βk τ̂k,

where, βk = |hk|
2
/
∑K

j=1 |hj |
2
. The hk is the complex chan-

nel coefficient between the kth transmitter and the receiver. As

previously, τ̂k ∼ N
(

τk, σ
2
2

)

. σ2
2 represents the variance of the

estimator for the VMISO case and σ2
2 ≈ c2(Lo,K)No/Es,

where c2(Lo,K) is a constant related to the length of the

training sequence, Lo, and the number of relays per cluster,

K [8]. The mean of τ̂ can be found by applying expectation

operator on (1) and is given as

(2)µτ̂ =

K
∑

k=1

E [βk]E [τ̂k],

where E [.] represents the expectation operator. By using

the conclusion provided in [13] and the properties of the

distribution of |hk|
2
, we have E [βk] = 1/K. Hence, the mean

of τ̂ can be found as

(3)µτ̂ =
1

K

K
∑

k=1

τk.

From the above equation, we can see that the mean of the

estimated timing offset is simply the mean of the propagation

delays. The timing error corresponding to the signal transmit-

ted by the kth node is ǫk = τk − τ̂ . By using (3), the mean

of ǫk is given as

(4)µǫk = τk − 1

K

K
∑

k=1

τk,

while the variance of τ̂ is given as

(5)σ
2
τ̂ = E

[

τ̂
2
]

− (E [τ̂ ])2 .
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The first term in (5) can be written as

(6)E
[

(τ̂)2
]

= E





(

K
∑

k=1

βk τ̂k

)2


 .

It has been shown in Appendix A that (6) can be evaluated as

E
[

τ̂
2
]

=
2

K(K + 1)

K
∑

k=1

(

σ
2
2 + τ

2
k

)

+
1

K(K + 1)

K
∑

p=1

K
∑

q=1

q 6=p

τpτq.

(7)

By substituting from (3) and (7) into (5), we get

(8)

σ
2
τ̂ =

2

K(K + 1)

K
∑

k=1

(

σ
2
2 + τ

2
k

)

+
1

K(K + 1)

K
∑

p=1

K
∑

q=1

q 6=p

τpτq −
1

K2

(

K
∑

k=1

τk

)2

.

It should be noted that the variance of the timing error ǫk is

identical to σ2
τ̂ i.e., σ2

ǫk
= σ2

τ̂ ∀ k = {1, 2, . . . ,K}.

IV. BEP ANALYSIS

In this section, we derive the BEP expression for both

the SISO and VMISO systems, which can be used along

with the statistics of timing errors to analyze the performance

of these systems. Although the BEP of SISO system has

been analyzed in [9], we first derive a variant of SISO BEP,

which incorporates not only the worst-case signaling scenario

employing root-raised cosine pulse-shaping but also includes

the statistics of timing errors as derived in Section III. We then

carry forward this analysis to a more general MISO case.

A. The worst-case BEP for the SISO system

For a general SISO system, the complex envelope of the

received signal is given as

(9)r(t) = h

∞
∑

i=−∞

s(i)g(t− iT − τT ) + n(t),

where τ is the normalized timing delay proportional to the

distance between the transmitter and receiver, h is the channel

coefficient, which is assumed to follow a complex normal

distribution with zero mean and σ2
h variance and n(t) is the

complex AWGN with variance No. The function g(t) denotes

a raised cosine pulse with tail truncated at t = ±LgT [14],

where T is the symbol duration. The ith transmitted symbol,

s(i), is a complex valued symbol from the QPSK constellation

with E

[

|s(i)|2
]

= Es. Although, QPSK is a quaternary mod-

ulation scheme, it can also be interpreted as two independently

modulated BPSK waveforms each modulating odd (or even)

bits [15]. Therefore, we can represent the above QPSK signal

as sum of two BPSK signals, i.e., r(t) = r1 + jr2, where r1
and r2 are given as

(10)r1(t) = h
√
Es

∞
∑

i=−∞

cos(θi)g(t− iT − τT ) + nI(t),

(11)r2(t) = h
√
Es

∞
∑

i=−∞

sin(θi)g(t− iT − τT ) + nQ(t),

and n(t) = nI(t)+jnQ(t). The symbols nI and nQ represents

the In-phase and Quadrature components of the AWGN,

respectively. Because the BPSK signals r1 and r2 can be

treated independently, the BEP of either of the two signals

is equal to the BEP of QPSK. Therefore, in this section, the

BEP for r1 is derived only. The received signal is sampled with

receiver clock delayed by τ̂T to compensate for the timing

offset. After sampling,the received signal r1 can be given as

(12)r1[m] = h
√
Es

Lg+m
∑

i=−Lg+m

cos(θi)g((m− i)T − ǫT )+nI [m].

It should be noted that the index of the summation in (12)

is i = {−Lg +m,−Lg +m+ 1, . . . , Lg +m} because the

tail of g(t) is truncated at t = ±LgT . At the receiver, the

amplitude of desired signal is decreased due to the timing

error, ǫ. However, the amount of degradation in the amplitude

of the desired signal is also dependent upon the phase of bits

transmitted in interval (−Lg +m)T ≤ t ≤ (Lg +m)T . The

worst-case scenario occurs when the amplitude of the sample

corresponding to mth bit is minimized, i.e., when the adjacent

bits are antipodal. The received signal for such a case is given

as
(13)r̃1[m] = h

√
Esξ(ǫ)cos(θm) + nI [m],

where

(14)ξ(ǫ) = g(−ǫT )−
Lg+m
∑

i=−Lg+m

i 6=m

|g((m− i)T − ǫT )| .

For the case of perfect synchronization, the conditional bit

error probability can be expressed as

(15)Plb(e;h) =
1

2
erfc





√

|h|2 Eb

No



 ,

where the subscript lb denotes the lower-bound case, erfc(.)
is the complementary error function and Eb = Es/2. Since

the correlator output is decreased by ξ(ǫ) due to timing error,

therefore, the worst-case BEP for imperfect synchronization is

given as

(16)P(e;h, ǫ) =
1

2
erfc





√

|h|2 Eb

No

ξ(ǫ)



 .

We can find P(e; ǫ) by marginalizing P(e;h, ǫ) over the prob-

ability density functio (PDF) of |h|2. If channel coefficient,

h ∼ CN (0, σh
2), then |h|2 ∼ Exponential(σ2

h). Hence, the

PDF of |h|2 can be given as

(17)f|h|2(x) =
1

σ2
h

exp(− x

σ2
h

).

Therefore,

(18)P(e; ǫ) =
1

2

ˆ ∞

0

erfc
(√

xγ̄bξ(e)
)

f|h|2(x)dx ,
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where γ̄b = Eb/No. After evaluating the integral in (18),

P(e; ǫ) can be given as

(19)P(e; ǫ) =
1

2

(

1− ξ(ǫ)

√

σh
2γ̄b

1 + σh
2γ̄b(ξ(ǫ))2

)

.

The timing error, ǫ, follows a normal distribution with zero

mean and σ2
1 variance, i.e., ǫ ∼ N

(

0, σ2
1

)

. The unconditional

BEP, P(e) is found by averaging P(e; ǫ) over the PDF of ǫ is

given as

(20)P(e) =
1

2
− 1

2

ˆ ∞

−∞

ξ(x)

√

σh
2γ̄b

1 + σh
2γ̄b(ξ(x))2

fǫ(x)dx.

where, fǫ(x) is the PDF of timing error, ǫ. The integration in

the above equation is tedious to evaluate analytically, however

can be solved numerically by using the numerical integral

routines. Using a method similar to imperfect synchronization

case, we can derive the unconditional BEP for the perfectly

synchronized receiver and is given as

(21)Plb(e) =
1

2

(

1−
√

σh
2γ̄b

1 + σh
2γ̄b

)

.

B. The worst-case BEP for the VMISO system

In this section, the BEP of the VMISO system with the

imperfect synchronization is derived. Assuming perfect CSI,

the signal at the receiver relay after coherent combining can

be given as

(22)y(t) =
K
∑

k=1

|hk|2
∞
∑

i=−∞

s(i)g(t− iT − τkT ) + n(t).

We use the same argument as given in SISO case and derive

the BEP for either of the two BPSK signals resulted from

the decomposition of above QPSK signal. One of the BPSK

signals is given as

y1(t) =
√
Es

K
∑

k=1

|hk|2
∞
∑

i=−∞

cos(θi)g(t− iT − τkT ) + nI(t).

(23)

Upon reception, the signal is compensated for the timing
offset by sampling with the receiver clock delayed by τ̂T .
For decoding the mth bit, the received signal is given as

y1[m] =
√
Es

K
∑

k=1

|hk|2
Lg+m
∑

i=−Lg+m

cos(θi)g((m− i)T − (τk − τ̂)T )

+ nI [m],

For worst case, we can express the above signal as

(24)ỹ1[m] =
√
Es

K
∑

k=1

|hk|2ξ(τk − τ̂)cos(θm) + nI [m].

The worst-case conditional BEP is given as

(26)P(e; τ̂ ,h) =
1

2
erfc

(

√

Eb

No

K
∑

k=1

|hk|2ξ(τk − τ̂)

)

,

where h = [h1, h2, . . . , hK ]
T

. Before proceeding further, we

consider the following lemma.

Lemma 1. Let X1, X2, . . . , XN be i.i.d exponential random
variables having identical mean µ and X = a1X1 + a2X2 +
. . .+ aNXN , where ai ∈ ❘ ∀i = 1, 2, . . . , N . The PDF of X
is given as

fX(x) =

N
∑

i=1

aN−2

i sign( 1

ai
) exp(− x

aiµ
)u(xsign( 1

ai
))

µ
∏N

l=1
l 6=i

(ai − al)
, (27)

where

sign(z) =











1 z > 0

−1 z < 0

0 z = 0.

(28)

Proof. The Characteristic Function (CF) of X is the product

of CF of Xi ∀ i = {1, 2, . . . , N} and is given as

(29)ϕ(t) =
1

N
∏

i=1

(1− jaiµt)

.

By using partial fractions, the CF defined in (29) can be written

as

(30)ϕ(t) =
N
∑

i=1

aN−1

i

(1− jaiµt)
∏N

l=1
l 6=i

(ai − al)
.

By applying Inverse Fourier Transform to the CF given in

(30), the PDF of X is found, which is given in (27). �

Based upon the above lemma and (26), we have following

theorem

Theorem 1. For a VMISO system with Rayleigh flat fading
channel and imperfect synchronization, the worst-case condi-
tional BEP, P(e; τ̂) is given as

P(e; τ̂)

=
1

2

K
∑

i=1

αi

[

1−exp

(

1

4σh
4 (ξ(τi − τ̂))2 γ̄b

)

erfc

(

1

2σh
2ξ(τi − τ̂)

√
γ̄b

)

+ 2 exp

(

1

4σh
4 (ξ(τi − τ̂))2 γ̄b

)

u

(

−sign

(

1

ξ(τi − τ̂)

))]

,

(31)

where

αi =
(ξ(τi − τ̂))K−1

∏K
l=1
l 6=i

(ξ(τi − τ̂)− ξ(τl − τ̂))
, (32)

Proof. The worst-case conditional BEP, P(e; τ̂ ,h) for VMISO

is given in (26). The process of finding the worst-case condi-

tional BEP, P(e; τ̂), involves marginalization of P(e; τ̂ ,h) over

K PDFs of
{

|h1|
2
, |h2|

2
, . . . |hK |2

}

. However, P(e; τ̂) can

be found easily by marginalizing P(e; τ̂ ,h) over the PDF of

random variable, X =
∑K

k=1 |hk|
2
ξ(τk − τ̂). We have shown

in Lemma 1 that X has the PDF given in (27). The conditional

BEP P(e; τ̂ ,h) is given as

(33)P(e; τ̂ , X) =
1

2
erfc

(

√

Eb

No

X

)

.

P(e; τ̂ , X) can be marginalized over the PDF of X to get

(34)P(e; τ̂) =

ˆ ∞

−∞

P(e; τ̂ , X)fX(x)dx.
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Fig. 2: The average worst-case BEP versus SNR for the SISO and VMISO
systems; K = 2, d = 25m.
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Fig. 3: The average worst-case BEP versus SNR for different number of relays,
K; d = 25m.

The P(e; τ̂) is found after some mathematical manipulation

and is given in (31). �

The unconditional BEP, P(e) can be found by marginalizing

P(e; τ̂) over the PDF of τ̂ , which is normally distributed with

mean µτ̂ and σ2
τ̂ . Therefore, the unconditional BEP, P(e) is

given as

(35)P(e) =

ˆ ∞

−∞

P(e; τ̂)fτ̂ (τ̂)dτ̂ ,

where, fτ̂ (τ̂), is the PDF of τ̂ , which is normally distributed

with its mean and variance given in Section III and P(e; τ̂)
is given in (31). The integration in (35) is difficult to solve

analytically, however, it can be solved by using numerical

techniques such as Gauss-Hermite Quadrature integration.

V. RESULTS AND SYSTEM PERFORMANCE

In this section, we present the results corresponding to

the SISO and VMISO systems shown in Fig. 1. We use

the QPSK modulation employing root-raised cosine pulse

shaping filter with roll-off factor, β = 0.25. We use a training

sequence having length, Lo = 64. The variance of the channel

coefficient is assumed unity i.e., σ2
h = 1. The Monte-Carlo

simulation are used for the simulation with 105 iterations for

each simulation point.

Fig. 2 shows the BEP plot of the SISO system and the

MISO system with K = 2. It can be seen that the worst-

case BEP reduces monotonically as the SNR is increased. The

simulation result closely matches with the analytical result. A

similar trend is observed in the curves labeled as lower-bound,

which correspond to the BEP for the perfect synchronization

case. The lower-bound curve for SISO system is found by

using (21), while the lower-bound curve for MISO is obtained

through Monte-Carlo simulation. It is interesting to note that

the worst-case BEP for the SISO system approaches its lower-

bound as the SNR increases and this stems from the fact that

the variance of the estimator reduces as we increase the SNR.

Similarly, the worst-case BEP curve for VMISO approaches

its lower-bound as the SNR is increased but unlike the SISO

case, the two curves do not match even at very high SNR
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Fig. 4: The average worst-case BEP for different values of distance, d; K = 4.

because of the presence of path delay disparity in VMISO

system.

The worst-case analytical BEP curves for different number

of transmitting relays, K for the VMISO system with d = 25m
is shown in Fig. 3. We note that for medium to high SNR, the

BEP performance of the VMISO enhances as K increases.

The improvement in the performance is due to the increase

in array and diversity gains as we increase K. However, at

low SNR, the VMISO system with lower number of relays

per cluster performs slightly better because the variance of

the timing error is directly proportional to K. For comparison

purpose, we have shown the worst-case analytical curve of the

SISO system in this figure. It can be seen that the SISO system

performs poorer than the VMISO system at high SNR because

it does not incur array or diversity gain. Fig. 3 provides an

insight into the required SNR margin to get a specific quality

of service (QoS). For instance, if the system is to be operated

at BEP ≤ 10−4, the VMISO system with four transmitting

relays should be operated at 14dB SNR, which is 7dB higher

than the SNR required for VMISO system with K = 6 for

getting the same QoS. Hence, these considerations should be

included when designing a VMISO network with imperfect
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Fig. 5: The PDF of weighted sum of exponential random variables.

synchronization.

The effects of increasing the distance, d on the BEP of

VMISO system with K = 4 has been shown in Fig. 4. It

can be seen that the worst-case BEP increases significantly

because of the increase in path delay disparity as we increase

d. However, at very low SNR, there is no significant change

in the BEP because the variance of the timing errors does not

change much due to change in d at low SNR as compared to

high SNR.

In Fig. 5, the analytical PDF of the weighted sum of

exponential random variables provided in Lemma 1 is verified

through simulation results. We have shown three different

examples, i.e., different coefficients of the exponential random

variables, however, we set µ = 1 for all three cases. The

simulation results closely match with the analytical curves and

it verifies the expression (27) in Lemma 1.

VI. CONCLUSION

The effect of imperfect timing synchronization in a VMISO

networks has been investigated. The statistics of the timing

errors are modeled and the analytical expressions of the BEP

of the network under imperfect synchronization have been

derived. The simulation and analytical results were presented.

We quantified the results that indicate a degradation in system

performance due to imperfect timing synchronization. It has

been also observed that by increasing the diversity order or re-

ducing the path delays, the BEP performance can be improved.

In future, this analysis should be extended to incorporate the

multi-hop propagation in cooperative networks.

APPENDIX A

From (6), we have

(36)E
[

τ̂
2
]

= E

[

K
∑
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β
2
k τ̂

2
k

]

+ E







K
∑

p=1

K
∑

q=1

q 6=p

βpβq τ̂pτ̂q






.

Because βk and τ̂k are uncorrelated, the first term in (36) is

given as

(37)E

[

K
∑
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β
2
k τ̂

2
k

]

=
K
∑

k=1

E
[

β
2
k

]

E
[

τ̂
2
k

]

.

By using the theorem given in [13] and properties of related

distribution, we can have

(38)E

[

K
∑

k=1

β
2
k τ̂

2
k

]

=
2

K(K + 1)

K
∑

k=1

(

σ
2
2 + τk

2
)

.

For the second term in (36)

(39)E







K
∑

p=1

K
∑
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βpβq τ̂pτ̂q






=

K
∑

p=1

K
∑

q=1

q 6=p

E [βpβq]E [τ̂pτ̂q] .

According to conclusion given in [13], we have E [βpβq] =
1

K(K+1) . Assuming τ̂p and τ̂q are uncorrelated, (39) is simpli-

fied as

(40)E
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q 6=p

βpβq τ̂pτ̂q






=

1

K(K + 1)

K
∑

p=1

K
∑
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q 6=p

τpτq.

By substituting from (38) and (40) into (36), we can get the

final expression for E
[

τ̂2
]

, which is given in (7).
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