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Abstract—This paper studies a multi-hop cooperative network
operating under imperfect timing synchronization. The timing
errors at the receiving nodes are statistically modeled and
the effects on the signal-to-noise ratio (SNR) are derived. The
distribution of SNR is then used to find the outage probability
of the nodes in a hop which together with a Markov model
provides the probability of making a successful hop. The results
show that the timing synchronization errors reduce the one-hop
success probability and the coverage of the network.

I. INTRODUCTION

Cooperative transmission (CT) introduced a new dimension

of data propagation in a more reliable manner with enhanced

system capacity. The benefits of using CT in sensor networks

have been shown in a variety of performance metrics such

as range extension and energy-efficiency [1]. Although CT

provides diversity and array gains in wireless networks, how-

ever, a major issue of CT lies in the timing synchronization.

To achieve maximum diversity gain, the coherent combining

techniques require a perfect alignment of all replicas of the

received signal. This condition, however, doesn’t hold in

general and each copy of signal experiences a distinct timing

offsets due to its propagation delay to the receiver. Most of

the previous works, for instance [1], assume perfect timing

synchronization in these networks.

A considerable amount of work has been done in timing

synchronization of cooperative networks. The authors in [2]

suggested a transmit time synchronization (TTS) method to

synchronize the transmissions of intra-cluster transmissions.

On the other hand, receiver timing synchronization (RTS) is

proposed in [3] and [4]. However, the network is limited

to two-hop and no insight into multi-hop propagation is

considered.

In this paper, we consider a decode and forward multi-hop

cooperative network using TTS of [2] and RTS of [3] at each

hop and quantitatively evaluate the performance of the net-

work subject imperfect timing synchronization. Specifically,

we derive a statistical model for timing synchronization errors

at a hop and use it to calculate the probability of making

a successful hop. We compare our results with the perfectly

synchronized case and quantify the signal-to-noise ratio (SNR)

This work was supported by the National ICT R&D Fund, Pakistan.

margin that is required to get the same coverage of the multi-

hop network under consideration.

II. SYSTEM MODEL

Consider a multi-hop network topology given in [2]. We

assume that the nodes are partitioned into non-overlapping

levels or hops and each node in a hop is d distance apart

from its adjacent transmitting node. The distance between two

consecutive hops is Md, where M is the number of nodes in

each level. The node which successfully decodes the received

signal can take part in further transmissions and is called

decode-and-forward (DF) node. The set of indices of DF nodes

at level n is represented by Nn. We assume a quasi-static and

flat fading Rayleigh channel.

III. STATISTICAL ANALYSIS OF TIMING OFFSET

In this section, we present the statistics of the estimated
timing offset, which will be used subsequently for finding the
success probability of a node. Let’s denote the timing offset
corresponding to the signal transmitted by the mth node in

level n−1 to the kth node in level n by τ
(n)
m,k and the estimated

timing offset is denoted by τ̂
(n)
m,k. At the kth node of the level n,

all the estimated offsets, τ̂
(n)
ℓ,k ∀ℓ = {1, 2, . . . ,M} are combined

to get a single optimal sampling time τ̂
(n)
k using [3, Eq.(30)].

This τ̂
(n)
k is used to pre-synchronize the clock of kth node.

The mean of τ̂
(n)
k is given as µ

τ̂
(n)
k

=
∑M

k=1 ζ
(n)
m,k τ

(n)
m,k, where

ζ
(n)
m,k =

M
∑

ℓ=1
ℓ 6=m






B

(n)
ℓ,k µ

(n)
m,k

µ
(n)
ℓ,k

(

ln(µ
(n)
ℓ,k /µ

(n)
m,k)− 1

)

+ µ
(n)
m,k

(

µ
(n)
ℓ,k − µ

(n)
m,k

)2






,

where B
(n)
ℓ,k =

∏M
j=1
j 6=ℓ
j 6=m

µ
(n)
ℓ,k

µ
(n)
ℓ,k

−µ
(n)
j,k

, µ
(n)
m,k = 1/(ξm,k)

β .

The ξm,k is the Euclidean distance between mth node of level

n− 1 to kth node of level n and β is path-loss exponent. The

variance of τ̂
(n)
k is given as

(1)

σ2

τ̂
(n)
k

=

M
∑

m=1

[

θ
(n)
m,k

(

(σ
(n)
m,k)

2 +
(

τ
(n)
m,k

)2
)]

+

M
∑

p=1

M
∑

q=1
q 6=p

[(

ζ
(n)
q,k ζ

(n)
p,k + δ

(n)
kq,p

)

τ
(n)
p,k τ

(n)
q,k

]

− µ2

τ̂
(n)
k

,
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where θ
(n)
m,k is given as

θ
(n)
m,k=

M
∑

ℓ=1
ℓ 6=m






B

(n)
ℓ,k µ

(n)
m,k

(

µ
(n)
ℓ,k

)2

−
(

µ
(n)
m,k

)2

−2µ
(n)
ℓ,kµ

(n)
m,k ln(µ

(n)
ℓ,k /µ

(n)
m,k)

(

µ
(n)
ℓ,k − µ

(n)
m,k

)3







(2)

The δ
(n)
kq,p

is the covariance between ω
(n)
p,k and ω

(n)
q,k ,

where ω
(n)
ℓ,k = |α

(n)
ℓ,k |

2/
∑

m∈Nn−1
|α

(n)
m,k|

2. The |α
(n)
ℓ,k |

2 de-

notes the channel gain from mth node of level n − 1
to kth node of level n and |α

(n)
ℓ,k |

2∼ Exp((ξm,k)
β). The

(σ
(n)
m,k)

2
≈ c(Lo,M)σ2

N (ξ
(n)
m,k)

β/Pt is the variance of estima-

tor, where c(Lo,M) is a constant related to the length of the

training sequence, Lo, and the number of relays per cluster, M
[3]. The Pt is the transmit power of each node and σ2

N denotes

the variance of the additive white Gaussian noise (AWGN).

IV. SNR IN PRESENCE OF TIMING ERRORS

Consider a perfect channel state information (CSI) and that

the replicas of received signal at each node are combined using

pre-detection maximal ratio-combining (MRC). Assuming a

rectangular pulse shaping, the SNR is not affected due to

imperfect timing synchronization if two consecutive bits have

the same phase. In this case, the SNR of the received signal at

kth node at nth level is given as γ
(n)
k = Pt

σ2
N

∑

m∈Nn−1

∣

∣

∣
α
(n)
m,k

∣

∣

∣

2

.

It should be noted that γ
(n)
k is also equal to the SNR with

perfect synchronization case. The SNR when two adjacent bits

have opposite phase, i.e., when they are antipodal, is reduced

and is given as

(3)γ̃
(n)
k =

Pt

σ2
N

[

∑

m∈Nn−1

(

∣

∣

∣
α
(n)
m,k

∣

∣

∣

2 (

1− 2
∣

∣

∣
τ
(n)
m,k − τ̂

(n)
k

∣

∣

∣

)

)]2

∑

m∈Nn−1

∣

∣

∣
α
(n)
m,k

∣

∣

∣

2 .

It should be noticed that γ̃
(n)
k reduces to γ

(n)
k if the estimated

timing offset τ̂
(n)
k is perfect. However, the error magnifies

as the difference between actual and estimated timing offset

increases. To find the success probability of the kth node,

P{γ̃
(n)
k > γth} is required, which involves the computation

of the probability density function (PDF) of γ̃
(n)
k , which is

prohibitive in closed-form. However, an upper-bound on γ̃
(n)
k

can be found by using the Cauchy-Schwarz inequality. Thus

using this inequality, we have

(4)γ̃
(n)
k ≤

Pt

σ2
N

∑

m∈Nn−1

[

∣

∣

∣
α
(n)
m,k

∣

∣

∣

2 (

1− 2
∣

∣

∣
τ
(n)
m,k − τ̂

(n)
k

∣

∣

∣

)2
]

.

The success probability for each node in a level is evaluated in

the subsequent section where a Markov model of transmission

process is formulated.

V. MODEL OF THE NETWORK

We represent the state of the kth node at level n by a

binary indicator function Ik(n), where Ik(n) = 1 represents

the successful decoding while Ik(n) = 0 represents a fail-

ure in decoding. Thus, the state of level n is represented

by X (n) = [I1(n), I2(n), . . . , IM (n)]. The state of level n

depends only upon the state of level n − 1, thereby, making

X a memoryless Markov chain with an absorbing state and

S transient states. If the transitions to and from the absorbing

state are eliminated, the resulting transition probability matrix,

P is a right sub-stochastic and irreducible having a dimension

of (2M−1)×(2M−1). Considering these properties of P, the

Perron-Frobenius theorem is exploited [1], which states that

there exists a maximum eigenvalue ρ and an associated left

eigenvector u, such that uP = ρu. In our case, ρ provides the

one-hop success probability, which implies that at least one

node in the next level will decode the message.

A. Transition Probability Matrix

Assuming that two adjacent bits can have same or opposite

phase with equal probability, the conditional probability of

successful decoding of data at the kth node at level n is given

as

(5)P{Ik(n) = 1|ψ} =
1

2
P{γ

(n)
k > γth|ψ}+

1

2
P{γ̃

(n)
k > γth|ψ},

where ψ = {X (n − 1) ∈ S} is the state of level n − 1. The

first term, P{γ
(n)
k > γth|ψ} gives the probability of success

at the kth node at level n given two adjacent bits have the

same phase, while the second term, P{γ̃
(n)
k > γth|ψ} gives the

success probability if two adjacent bit are antipodal. These two

terms are combined by using the law of total probability. The

γth is the modulation dependent SNR threshold for successful

decoding of received signal. The first term of (5) can be

evaluated by using the cumulative density function (CDF) of

hypoexponential distribution [1], which is given as

(6)P{γ
(n)
k > γth|ψ} =

∑

m∈N
(i)
n

C(k)
m exp

(

−λ(k)
m γth

)

,

where C
(k)
m =

∏
ℓ∈N

(i)
n−1

ℓ 6=m

λ
(k)
ℓ

λ
(k)
ℓ

−λ
(k)
m

, λ
(k)
m =

(ξm,k(n))
βσ2

N

Pt
,

and N
(i)
n−1 is the set of DF nodes at level n − 1 which are 1

contributing to state i. For the second term of (5), the PDF of
SNR given in (3) is prohibitive in closed-form. However, by
using CDF of upper-bound given in (4), the second term of
(5) is evaluated as

P{γ̃
(n)
k > γth|ψ} =

∑

m∈N
(i)
n−1

ˆ ∞

−∞

D(k)
m (x) exp

(

−λ̃(k)
m (x) γth

)

f
τ̂
(n)
k

(x)dx,

(7)

where

D
(k)
m (x)=

∏
ℓ∈N

(i)
n−1

ℓ 6=m

λ̃
(k)
ℓ

(x)

λ̃
(k)
ℓ

(x)−λ̃
(k)
m (x)

, λ̃
(k)
m (x)=

(ξ
(n)
m,k

)βσ2
N

Pt

(

1−2
∣

∣

∣
τ
(n)
m,k

−x

∣

∣

∣

)2 .

In (7), f
τ̂
(n)
k

(x) is the PDF of the τ̂
(n)
k . The integration

(7) is very difficult to solve analytically, however, we can

numerically evaluate it by using the Gauss-Hermite quadrature

integration. Considering Φ(k) = P{Ik(n) = 1|ψ} and N
(j)
n and

N
(j)

n be the indices of nodes in the level n which are 1 and

0, respectively, corresponding to state j, we have following

one-step transition probability from ith state to jth state

(8)Pij =
∏

k∈N
(j)
n

Φ(k)
∏

k∈N
(j)
n

(

1− Φ(k)
)

.
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Fig. 1: The one-hop probability of success versus SNR and for different values
of M ; d = 1m, γth = −5dB, Lo = 192 and β = 2.
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Fig. 2: ρ − ρI versus SNR for different values of M and d; γth = −5dB,
Lo = 192 and β = 2.

Similarly, the one-step transition probability for perfect syn-

chronization case can be found by replacing Φ(k) in (8) by

Ψ(k) = P{γ
(n)
k > γth|ψ}.

VI. RESULTS AND PERFORMANCE ANALYSIS

In this section, we present the analytical results correspond-

ing to various network configurations. We denote the one-hop

success probability for the perfectly synchronized case as ρ,

while ρI is used for the imperfect case and Υ = Pt/σ
2
N .The

analytical results are obtained by finding P using (21) and

plotting its highest eigenvalue.

Fig. 1 shows the behavior of ρI versus SNR for various

values of number of nodes per hop, M . It can be seen that

ρ increases as we increase the SNR. However, at low values

of SNR, the M = 2 case performs better than the rest of the

cases because not only the path-loss and path length disparities

are small but also the average distance to the next level nodes

is less. However, as the SNR increases the other two cases

also perform well. It can be seen in the inset that at very high

SNR, the diversity gains start to play their role and M = 4
case outperforms the other two cases.

In Fig. 2, ρ − ρI is depicted for varying number of nodes

per cluster, M and distance d. It can be observed that the

difference between two cases is dominant at specific values of

SNR for specific value of M . The difference increases as the

M increases. At very high SNR, the difference in the success

probabilities reduces to zero, which indicates that at high SNR,

the effects of timing errors vanish. It is also interesting to note

that the spread of these bell-shaped curves decreases as M
increases. This is because of the diversity gain at higher M
that causes the ρI to converge to ρ for even a slight increase

in the SNR. The degradation is the success probability due

to imperfect synchronization is compensated by applying an

additional SNR margin. For instance, at 5.2dB SNR for M = 4
case, the timing errors reduces the one-hop success probability

to 20%, which should be compensated by applying a suitable

SNR margin of 2.8 dB to get the same success probability

as that of perfect synchronized case. It can also be noticed

in Fig. 2 that by increasing the distance d the peak value of

ρ − ρI increases due to increased path delay disparities. For

instance, if we compare the peaks of the bell-shaped graphs

for d = 10m and d = 30m, we can notice a peak difference of

4% in one-hop probability of success. Additionally, a higher

SNR margin is required due to greater path-loss.

For a given minimum required one-hop success probability

η, the coverage for both the perfect and imperfect timing

synchronization schemes is given in TABLE I. It can be ob-

served that there is a huge difference between the both perfect

and imperfect synchronization cases specially at M = 4. We

can see a 60% and 56% reduction in coverage for M = 3
and M = 4, respectively, due to imperfect synchronization.

However, the coverage for M = 2 is not changed appreciably

because it incurs less path disparities.

TABLE I: The coverage of network; η = 99.9%, d = 2m, Υ = 9dB,
γth = −5dB, Lo = 192 and β = 2.

Synchronization
Coverage distance (m)

M = 2 M = 3 M = 4
Perfect 4 56 110

Imperfect 2 22 48

VII. CONCLUSION

In this paper, we quantified the consequences of imperfect

timing synchronization on the performance of cooperative

multi-hop networks. The results indicated that even in the

presence of transmit and receive synchronization algorithms,

the system suffers with reduced SNR and hence the coverage

of the network is reduced.
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