
Interference Analysis in Cooperative Multi-Hop

Networks Subject to Multiple Flows

Quratulain Shafi∗ and Syed Ali Hassan†

School of Electrical Engineering and Computer Science

National University of Sciences and Technology, Islamabad, Pakistan

{10mscseqshafi∗, ali.hassan†}@seecs.edu.pk

Abstract—This paper studies the effects of allowing multiple
packets to flow simultaneously in a cooperative multi-hop trans-
mission system. Although, the packet delivery rate may increase
with multiple packet flows, however, the desired signals of one
packet may get interfered with the signals of the other packets in
the network, thereby causing some of the packets to die off. This
phenomenon is analyzed by modeling the multi-hop transmission
as a conditional Markov process, followed by the derivation of its
transition matrix. The resulting distribution is used to calculate
the outage probability of a node in a cooperative environment in
the presence of desired as well as interfering signals. The model
is then used to obtain the network coverage, until which a packet
can travel for a given packet delivery ratio constraint. Numerical
simulations are performed to validate the analytical models.

I. INTRODUCTION

IN a multi-hop Cooperative Transmission (CT), the re-

sources of multiple, spatially separated radios are shared

to transmit the data of a single source for improving link

reliability and providing range extension by achieving transmit

diversity [1]. The concept of Opportunistic Large Arrays

(OLA) was introduced as a form of concurrent CT, that allows

a group of nodes in each hop to transmit the same message

to another group of nodes [1]. The benefits of this kind of

network such as range extension [2] and energy efficiency [3]

were deeply studied.

Infinite node density OLA transmissions (with single source

packet) were initially studied using Monte-Carlo methods

and successful infinite broadcast conditions were derived [1].

However, [4] studied the finite density extended networks and

showed a zero probability of successful broadcast. An ana-

lytical model has been introduced for multi-hop cooperative

linear networks with finite node density in [5], however, in

this and other related works [6]−[8], only a single packet

traverses the network and new packet is not allowed to be

inserted into the network unless the previous packet reaches its

destination. Interference due to multi packet OLA transmission

within a single flow is studied, along a disk [9] as well as

strip-shaped network [10]. However, in both these works, the

authors assume that the sequence converges to a continuum

limit, as the number of nodes in the network goes to infinity.

This assumption is not appropriate for low density networks.

The authors gratefully acknowledge the National ICT RD Fund, Pakistan
for sponsoring this research work.

When multiple packets are allowed to flow in a network

simultaneously, transmission of one packet from one level

to another, acting as a desired signal for one level may

end up as an interfering signal for another, if these packets

are transmitted over the same frequency reuse spectrum. We

stochastically model the multi-flow, multi-hop network with

a class of absorbing conditional Markov chains and prove

numerically that the conditional Markov chain also exhibits

a quasi-stationary distribution, and that Perron-Frobenius the-

orem holds for conditional Markov chain, if the random

process is assumed to be homogeneous. We derive the outage

probability of a node in the presence of desired as well as

interfering signals. Expressions of outage probabilities based

on Signal-to-Interference Ratio (SIR) exist in literature for a

variety of channel models, including log-normal [11], Rayleigh

and Rician [12] fading environments, all of which deal with

single desired signal. The cumulative distribution function

(CDF) of the ratio of sum of desired powers and the sum of

interfering powers is required to obtain an expression of the

outage probability, which to the best of the authors knowledge,

is not present in literature.

Section II of this paper gives a detailed description of the

network layout, while Sections III and IV present the proposed

model of the network using conditional Markov chain and the

derivation of its transition probability matrix, respectively. In

Section V, the accuracy of the model is tested, followed by

conclusion and possible future work in this particular subject.

II. SYSTEM DESCRIPTION

Consider a linear (one-dimensional) network topology with

decode-and-forward (DF), half-duplex nodes placed d distance

away from each other. Each level or hop consists of a

fixed number, M , of nodes that cooperatively send the same

message signal to the M nodes of next level as shown in

Fig. 1, where M = 4. All the nodes that can decode the

message, relay the message to the M nodes of the next

level and this process continues until the message reaches the

destination. We allow multiple packets to traverse the network

simultaneously.

The source inserts a new data packet into the network and

each packet takes one time slot to move from one level to the

next. We assume perfect timing synchronization between the

nodes of a level such that all the DF nodes of a level transmit
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(a) R = 1

(b) R = 2

Fig. 1: Network topology for PIR 1 and 2, light gray area de-

notes tier 1 interference and dark gray area denotes additional

interfering signals from tier 2.

at the same time over orthogonal fading channels [14]. Here,

we define two network parameters; i) Packet Insertion Rate

(PIR), R, and ii) tiers of interference, T . PIR is defined as the

rate per time slot at which the source transmits a new packet.

Since we assume half-duplex radios, a full rate transmission,

R = 1, implies a packet insertion after waiting one time slot.

For example, in Fig. 1(a), the DF nodes at level (n − 1)
transmit packet px to level n, where x represents the packet

number being transmitted.1 Similarly, level (n+ 1) transmits

px−1 to level (n + 2), and so on. This is an example of

fastest possible insertion rate. In Fig. 1(b), R = 2 implies

that the source transmits a packet after waiting two time

slots between consecutive transmissions. Therefore, when level

(n− 1) transmits px to level n, level (n+ 2) transmits px−1

to level (n + 3). Although, the intended destinations of level

(n−1) nodes are level n nodes (for any R), however, assuming

omnidirectional antennae, the transmissions will be overheard

by the neighbouring levels, causing interference.

Solid arrows from level (n − 1) to level n show the

multiple desired signals, whereas, the dotted arrows represent

the unwanted signals that occur because of multiple flows in

the network. With different tiers, T , different number of levels

interfere with the nodes of a level. As shown in Fig. 1(a), when

T = 1, the unwanted signals affecting the node arrive only

from level (n+ 1), whereas when T = 2, levels (n+ 3) and

(n−3) also contribute to the interference with packet insertion

rate, R = 1. When we increase R, the unwanted signals arrive

from levels that are further away from the concerned node as

shown in Fig. 1(b) where R = 2. Therefore, the interfering

levels differ with different combinations of T and R.

A node at any certain level can decode and forward the

packet without error when its received desired signal power

and SIR are greater than thresholds, α and τ , respectively.

1We have shown transmissions to one node only (namely, the first node of
level n). However, all the nodes of level n receive the message from the DF
nodes of level (n− 1).

The filled black circles in Fig. 1 represent the DF nodes

while the hollow circles show that the nodes have not decoded

the data. The desired received power at the mth node of

level n, denoted as Prm (n) is given as Pt

∑K
k=1

µkm

(dkm)β
,

where we assume that all nodes of the network transmit with

same transmit power, Pt. The channel gain, µkm, from node

k in the previous level to node m in the current level is

exponentially distributed with unit mean and corresponds to

the squared envelope of the signal undergoing Rayleigh fading.

The distance dkm represents the Eucledian distance between

the nodes and β is the path loss exponent. The summation is

over the DF nodes of previous level such that K ≤ M . SIR,

ϕ, which is the ratio of desired and interfering power is given

as

ϕ =

∑K
k=1

µkm

(dkm)β∑I
i=1

µim

(dim)β

, (1)

where K and I are the number of desired and interfering

signals, respectively. We assume that the interfering signals

also exhibit Rayleigh flat fading, where dkm and dim are the

distances between the node in the current level and the nodes

in the previous and interfering levels, respectively.

III. MODELING BY CONDITIONAL MARKOV CHAIN

In this section, we propose the mathematical modeling of

the network described in Section II with a class of discrim-

inative model that forms a linear-chain conditional random

field also known as conditional Markov chain [13]. Let X (n)
denotes the state of the network at level n. A straight-forward

way to model the state of the system is to represent the

number of DF and non-DF nodes at level n. Let 1m(n)
denotes the indicator function of a node m which takes value

1 when node m is a DF node and 0 when the node m could

not decode the data. Hence the state of the system at level

n can be represented as X (n) = [11(n),12(n), ...,1m(n)],
where X (n) is an M−bit binary word and each outcome

is a state consisting of 2M combinations in decimal form;

0, 1, ..., 2M − 1. The state at level n can also be expressed as

in. For example in = 0101 in binary and in = 5 in decimal

form in Fig. 1(a).

As discussed previously, a node receives desired as well as

interfering signals. Let Y denotes the set of states that causes

interference to the level under consideration. The states in Y
depend on the value of R and T . For example, Y consists of

levels (n− 3), (n+ 1) and (n+ 3) when R = 1 and T = 1
as shown in Fig. 1(a). It can be shown that the cardinality of

Y , given as |Y| ≤ ∞ for a given tier, T and PIR, R. Based on

these assumptions, the state of the system at level n i.e., X (n)
depends on the previous state X (n− 1) and Y . Hence X (n)
conditional on X (n − 1) and Y forms a conditional Markov

chain [13], such that

P {X (n) = in |X (n− 1) = in−1, ...,X (1) = i1,Y} (2)

= P {X (n) = in |X (n− 1) = in−1,Y} .

Here, the conditional Markov chain is homogeneous for a

given T and R, with the assumption that the statistics of the
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channel remains the same for all the hops in the network

i.e., similar fading characteristics (Rayleigh fading) at each

hop. This implies that if we fix R and T , similar system

conditions can be observed at a later stage down the network.

The PIR is generally fixed in the network. The motivation

for fixing T is that we will later show that the increase in

interfering tiers follows a diminishing returns phenomenon

and considering additional interference tiers do not impact the

network performance (e.g., outage probability of a node). This

is because, after a sufficiently large T , the interfering levels

are far apart from the level under consideration and are not

contributing to the interference. It can be seen that all the

nodes at a certain level can fail to decode the data successfully,

thus forcing the Markov chain to go into an absorbing state

(i.e., state 0 in decimal). This will result in the termination

of the transmission for a particular packet, px. Therefore,

the state space of the conditional Markov chain, X , can be

denoted as {0}∪S, where S =
{
1, 2, ..., 2M − 1

}
, is the finite

transient irreducible state space, while 0 is the absorbing state

such that lim
n→∞

P {X (n) = 0} ր 1 a.s.There always exists a

probability for the transition of data from one transient state to

another because of the irreducible state space S. We describe

the conditional Markov chain in the form of two matrices.

The first matrix, Q̃, is the full, 2M ×2M transition probability

matrix for the states in the set {0} ∪ S, in which each row

sums to one. We cross out the columns and rows that involve

the transitions to and from state 0 in Q̃ to form the second

matrix, Q, making a
(
2M − 1

)
×

(
2M − 1

)
submatrix of Q̃,

that corresponds to the states in S. It can be construed here

that the transition probability matrix, Q, is not true stochastic,

as its row entries do not sum to 1. Moreover, Q being a

square irreducible non-negative matrix inevitably results in the

existence of an eigenvalue, ρ, according to Perron-Frobenius

theorem such that, {0 < ρ < 1}. The theory of Markov chains

states that a distribution u = (ui, i ∈ S) is called ρ-invariant

distribution if u is the left eigenvector of the transition matrix,

Q, corresponding to ρ, i.e., uQ = ρu.

As time proceeds, the limiting behaviour of the Markov

chain portrays that termination of the transmission of data

or in other words killing is an inevitable event, since

∀n,P {X (n) = 0} > 0. However, we are interested in finding

the distribution of the transient states, just before the absorbing

state is reached. This limiting distribution is known as the

quasi-stationary distribution of the Markov chain, and is inde-

pendent of the initial conditions of the process. From [5] the ρ-

invariant distribution for one-step transition probability matrix

of the Markov chain on S provides this unique distribution.

To find the quasi-stationary distribution, we first calculate the

maximum eigenvector, û, of Q. Defining u = û/
∑2M−1

i=1 ûi,

as a normalized version of û that sums to one gives the

quasi-stationary distribution of X . Hence the unconditional

probability of being in state r at level n is given as

P {X (n) = r} = ρnur, r ∈ S, n ≥ 0. (3)

We also let E = inf {n ≥ 0 : X (n) = 0} denote the

level at which the killing occurs. It follows then,

P {E > n+ n0|E > n} = ρn0 , while the quasi-stationary dis-

tribution of the Markov chain is lim
n→∞

P {X (n) = r|E > n} =

ur, where r ∈ S. This equation represents the conditional

probability of being in a state r given that the killing state

has not arrived yet. This conditional probability is just the rth

value of the eigenvector of matrix Q.

IV. TRANSITION PROBABILITY MATRIX

In this section, we find the state transition probability

matrix, Q, for our model, the eigenvector of which will give

us the quasi-stationary distribution. The probability for a node

m to decode at level n is

P {nodem of leveln will decode} (4)

= P {Im (n) = 1} = P {Prm (n) ≥ α ∩ ϕ
m
(n) ≥ τ} ,

where Prm (n) and ϕ
m
(n) represent the received power and

the received SIR respectively, for the mth node at level n. The

success probability of the node is given as

P {Prm (n) ≥ α ∩ ϕ
m
(n) ≥ τ} (5)

=

∫ ∞

x=α

[∫ x/τ

y=0

fϕm
(y)dy

]
fP rm(x)dx,

where fP rm(x) and fϕm
(y) are the probability distribution

functions (PDFs) of the received power and the received SIR

at the mth node, respectively. The nodes exhibit a performance

threshold, where data received at a certain node is decoded

successfully only when both the received power, Pr, and

SIR, ϕ, exceed certain defined thresholds, denoted by α and

τ , respectively. Assuming a Rayleigh fading environment,

both the desired and the interfering powers are exponentially

distributed. Hence the numerator of (1) represents a random

variable which is a sum of K independent but non-identically

distributed (i.n.i.d) exponential RVs. Same phenomenon goes

for the denominator of (1). The resulting distribution for the

sum of K desired powers and for the sum of I interfering

powers are both hypoexponential distributions as given in the

following definition.

Definition 1. A RV X ∼ hypoexponential (λ ) with positive

parameter vector λ = λ1, λ2, ..., λk, such that λk 6= λj ,

if X is a sum of mutually independent exponential RVs,

X1, X2, ..., Xk with respective parameters λ1, λ2, ..., λk.

To obtain an expression of the outage probability, the

Cumulative Distribution Function (CDF), FZ(z), of the ratio

of sum of desired powers and the sum of interfering powers

is required, which is derived in the following theorem.

Theorem 1 (Ratio of independent hypoexponential random

variables). Let X ∼ hypoexponential (λ) and Y ∼ hypoex-

ponential (η) be two independent hypoexponential RVs and

let Z = X/Y . The Complementary Cumulative Distribution

Function (CCDF) of Z is given as

P {Z > τ} =

I∑

i=1

K∑

k=1

CiDk

(
λk

τηi + λk

)
, (6)
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where

Ci =

I∏

j=1,j 6=i

ηi
ηi − ηj

, Dk =

K∏

l=1,l 6=k

λk

λk − λl
. (7)

Proof. Each X and Y is a sum of independent exponential

RVs, such that X = X1 + X2 + X3 + ... + XK and Y =
Y1 + Y2 + Y3 + ...+ YI . As Xk and Yi both have exponential

distribution, hence fζ(u) =
1
φexp

(
−u
φ

)
, where ζ ∈ {Xk, Yi}

with respective parameters φ ∈ {λk, ηi} such that λk 6= ηi,
∀i,k. The hypoexponential distribution of X is given as

fX(x) =

K∑

k=1

Dk
1

λk
exp

(−x

λk

)
, (8)

Similarly, the distribution of Y is also hypoexponential as

given in (7) with λk replaced with ηi and Dk with Ci. Since X
and Y are independent, the CDF of the ratio of Z = X/Y is

obtained by integrating the original PDFs on the region of sup-

port, i.e., P {Z ≤ τ} = 1− P {Z > τ} = 1− P {X/Y > τ}.

Therefore,

P {X/Y > τ} =

∫ ∞

x=0

[∫ x/τ

y=0

fY (y)dy

]
fX(x)dx, (9)

The term under square brackets is the CDF of hypoexponential

RV and is given as

∫ x/τ

y=0

fY (y)dy =
I∑

i=1

Ci

[
1− exp

(
−

x

τηi

)]
. (10)

By combining (7) and (11), (9) is evaluated as

P {Z > τ} =
I∑

i=1

K∑

k=1

CiDk

(
λk

τηi + λk

)
. (11)

Now we are in a position to derive the success probability

of a node given by (4), where we assume that the received

power, Pr is required to be greater than α, which requires

changing the lower limit of x in (9) to α. Thus the probability

of success is given as

P {Z > τ} =
I∑

i=1

K∑

k=1

CiDk

λk
(12)

∫ ∞

x=α

[
exp

(−x

λk

)
− exp

(−x

λk
−

−x

τηi

)]
dx,

which after a straight-forward analysis gives

P {Z > τ} =
I∑

i=1

K∑

k=1

CiDkexp

(
−α

λk

)
(13)

[
1−

τηi
τηi + λk

exp

(
−α

τηi

)]
.

Until now, the number of interfering nodes are represented

by I , where I ∈ Z
+, Z+ being the set of positive integers.

However, in the network of Fig. 1, the number of interfering

nodes depends upon R and T . Hence, we represent an inter-

fering level as (n+ γj) where γj ∈ Γ and j ∈ {1, 2, ..., |Γ|},

where |Γ| is the cardinality of set Γ. The set Γ depends on the

values of R and T , such that Γ = {1} when R = 1 and T = 1,

whereas Γ = {1, 3,−3} when R = 1 and T = 2 as shown in

Fig. 1. We define two sets, K and I, to represent the indices of

the nodes that are active in the desired and interfering levels,

respectively, where |K| ≤ M . However, as |Γ| ≥ 1, there

might be different indices for each interfering level, making

|I| ≤ M |Γ|. We can now express, the probability of success

of the mth node at level n as

P (m)
s =

∑

i∈I(n+γj),
γj∈Γ

∑

k∈K(n−1)

CiDkexp

(
−α

λ
(m)
k

)
(14)

[
1−

τ ηi,γj

(m)

τ ηi,γj
(m) + λ

(m)
k

exp

(
−α

τ ηi,γj
(m)

)]
,

where Ci and Dk are given in (8), λ
(m)
k is the coefficient of

the exponential RV from node k in the desired level (n− 1)

to node m in the current level n, and η
(m)
i,γj

is the coefficient of

the exponential RV from node i in the interfering level (n+γj)
to the mth node in the current level n given as

λ
(m)
k =

1

dβ(M − k +m)β
, (15)

and

η
(m)
i,γj

=

{
γ > 0, 1

dβ(M |γj |−m+i)β

γ < 0, 1
dβ(M |γj |−i+m)β

.
(16)

We represent the states of the desired level, (n− 1) and current

level, n as s1 and s2 such that {s1, s2} ∈ S. The state of

interfering levels, on the other hand belongs to {0} ∪ S,

as there is a possibility that all the nodes in an interfering

level fail to decode data from their respective desired levels,

causing no interference for the level under consideration. For a

given R and T , we have |Γ| interfering levels, hence the total

possible number of combinations of interfering level states

become
(
2M

)|Γ|
. If we assume that all the interfering levels

are equally likely, the transition probability will be an average

of all the probabilities over all the combinations of interfering

level states. If we let the indices of those nodes that decode

the data correctly in state s2 (at level n) and indices of those

that fail to decode, to be N
(s2)
n and N

(s2)

n , respectively, the

probability, Pϑ for interfering combination ϑ is given as

Pϑ =
∏

m∈N
(s2)
n

(
P (m)
s

) ∏

m∈N
(s2)
n

(
1− P (m)

s

)
, (17)

where P
(m)
s is given in (14) and the combination ϑ dictates

the set I. Finally, we deduce one-step transition probability for

going from state s1 to state s2 given interfering set A, where

A represents all possible combinations of interfering levels as

Ps2|s1,A =
∑

ϑ∈A

Pϑ

(2M )
|Γ|

. (18)

2014 IFIP Wireless Days (WD) 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SIR threshold, τ

C
D

F
, 

P
 {

 Z
 <

 a
b

s
c
is

s
a

 }

Analytical  T=1

Analytical  T=2

Simulation T=1

Simulation T=2

Fig. 2: CDF of the ratio of two hypoexponential RVs for M =
2, R = 1.

The state transition probabilities are used to formulate a(
2M − 1

)
×
(
2M − 1

)
matrix, Q, that we mentioned in Section

III. The eigenvector of Q will give us the quasi-stationary

distribution.

V. RESULTS

In this section, we present various results pertaining to the

performance of the cooperative network under multiple flows.

First of all we present the analytical as well as numerical

simulation results to show the validity of Theorem 1, i.e.,

the ratio of independent hypoexponential RVs. We assume the

network topology as shown in Fig. 1, to compare the results

of the CDF, P {Z < τ } , for M = 2 and R = 1. It can be

seen in Fig. 2 that the analytical and numerical results match

closely for both the tiers. The analytical results are obtained

from (7) and the solid curve shows the outage probability (i.e.,

the CDF) of a single node (specifically the first node of level

n) in the presence of desired as well as interfering signals. For

a fixed τ , the outage probability increases when we move from

tier 1 to tier 2, as tier 2 introduces more interfering signals to

the node under consideration. In all the results, we set d = 1
and β = 2.

Fig. 3 shows the comparison of distribution of states for

analytical and simulation model for M = 2, R = 1 and

T = 1, with α = 0.1 and τ = 0.05 for various number

of hops. When M = 2, there are potentially three transient

states in the system, which are {0, 1}, {1, 0} and {1, 1}. The

figure represents the probability of being in each state using

the analytical as well as the simulation model. The analytical

part is attained using (18), whereas for the simulation results,

we randomly generate the states initially and then assign 1 or

0 to each node of the next level, if the received power and SIR

are greater or less than the thresholds α and τ , respectively.

This process continues until all the nodes fail to decode in

a level (i.e., the absorbing state is reached). We then take

the average of 100,000 simulation trials. It can be noted that

with the increase in the number of hops, the probability of

each transient state also decreases, however the skewness of

all the three curves remains constant. This plot shows that
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Fig. 3: Distribution of the states for M = 2, R = 1, T = 1,

α = 0.1, τ = 0.05.
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Fig. 4: Probability of one-hop success for M = 2, α = 0.05.

the quasi-stationary property is exhibited by the conditional

Markov chains. It can be noted that initially the possibility of

state distribution is equally likely for the simulation results,

i.e., 1/3. However, after a few hops, the network achieves the

quasi-stationary distribution for a given R and T .

The probability of one-hop success, ρ, is the Perron-

Frobenius eigenvalue of the matrix Q that represents the

probability of at least one node decoding the data. Fig. 4

represents ρ versus SIR threshold, τ for various tiers of

interfering signals, where α = 0.05 and M = 2. For a certain

τ , the probability of one-hop success decreases when we move

from T = 1 to T = 2, and similarly for T = 2 to T = 3 and

so on, as more interfering signals are introduced. However,

the effect of increasing interference tiers show diminishing

returns. Therefore, for this network topology, the effect of

interference on the performance of a node is noticeable for

upto two-tierd levels of interference only. Same effect can be

seen for R = 2, with the exception that this case shows better

success probability for a fixed τ . This is because when PIR is

higher, the interfering tiers are spread further apart resulting in

a reduced outage probability. The quality of service (QoS), η
of this type of network can be represented as the probability of
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Fig. 5: Number of hops for M = 2, R = 1, T = 1, α = 0.01.

not having entered the absorbing state, making its ideal value

1. Equation (3) provides the maximum number of hops, h, that

a packet can travel for a given η, i.e., ρh ≥ η, which gives

h ≤ ln η
ln ρ . If the required QoS is decreased, the coverage of

the network increases as shown in Fig. 5, in which we show

the analytical and simulation results for τ versus the number

of hops, h that can be reached, which specifies the number

of level until which the packet travels with a packet delivery

rate (PDR) of η. In Fig. 5, M = 2, R = 1, T = 1 and

α = 0.01. For the simulation results, we run the simulation

for 100,000 packets and observe the hop number at which the

packet delivery ratio equals the value of η.

Fig. 6 shows the distance that can be covered over a range of

required SIR threshold, τ , for various values of PIRs and M ,

where α = 0.01. The distance is represented as normalized

distance, which is evaluated by multiplying the number of

hops, h, and the number of nodes in a certain level, M ,

and then dividing by d. Higher value of R shows that the

network waits for more time slots before inserting another

packet, reducing the interference at a certain level for a given

tier (T = 1 in this case), providing larger network coverage.

Lowering R improves the networks throughput due to higher

simultaneous packet transmission; but packets may be lost

owing to interference. Thus, to attain a certain QoS, a trade

off between the two is required. As we increase the number

of nodes in each hop, better coverage can be attained for a

certain value of τ , indicating the effects of increased diversity

gain. It can be further observed that same distance might be

achieved for various combinations of M and R. For instance,

at τ = 0.4, same coverage of the network can be achieved if

M = 4, R = 2 or M = 3, R = 3. The former case has a

higher throughput and less delay (owing to larger hop distance)

and may be preferred over the latter case.

VI. CONCLUSION

Interference due to multiple flows in a cooperative linear

network is modeled using conditional Markov chain, where

the desired and interfering signals are non-identical and expo-

nentially distributed. Expression for the outage probability of
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Fig. 6: Coverage of network for T = 1, α = 0.01, η = 0.9.

a node is derived based on received power and received signal-

to-interference ratio by determining the CDF of the ratio of

two hypoexponential RVs. Analytical and simulation results

are presented to show the accuracy of the proposed model, as

well as to observe the effect of increasing interference on the

outage probability, by varying packet insertion rate and tiers

of the interference.
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