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Abstract—In this paper, deterministic space-time block codes
(STBCs) are used to design orthogonal channels to transmit
the information independently in a cooperative communication-
based sensor network. Two topologies of two-dimensional (2D)
opportunistic networks, the distributed grid strip and the co-
located groups, having same node density are considered. Or-
thogonal STBCs designed for deterministic number of nodes are
partially randomized with the help of indicator random vector
and are used for the opportunistic multi-hop network in which
the number of cooperating or decode-and-forward (DF) nodes in
each hop are random. Different node geometries and the effect of
increasing node number in each level are compared on the basis
of one-hop success probability and network coverage at various
signal-to-noise (SNR) margins. The analysis for different STBCs
is made on the basis of diversity and rate it ensure at a certain
required quality of service (QoS).

I. INTRODUCTION

Cooperative communications (CC) is a transmission mode,
which is recently in the lime light of researchers among
the other fields of wireless communications. In a CC-based
wireless system, the nodes act as multiple virtual antennas
and help each other by relaying other nodes’ information to
achieve diversity gains, increased capacity, and reliability. This
type of communication and cooperation finds its applications
in both infrastructure-based wireless networks and in ad hoc
wireless networks.

Opportunistic large array (OLA) is one of the types of
wireless sensor cooperative networks that operates in a decode-
and-forward (DF) relaying mode and propagates the message
to the destination via multi-hop mechanism [1]. In an OLA
network, the source broadcasts its message and all the relays
in the vicinity of the source that can decode this message,
relay it to the next level of nodes (or OLAs). In each hop, the
relays cooperatively transmit the information towards the sink
with minimal or no coordination between them, i.e., a node
at a particular hop will not have any information about the
number and the location of other decoding nodes of the same
hop. The decision of being able to decode or not to decode is
made depending upon a transmission threshold.

Many authors have studied the effect of cooperation on
diversity, reliability, coverage, energy-efficiency, and rate in
multi-hop cooperative networks [2]–[7]. However, very few
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of them have paid attention to the fact that for achieving
full diversity, information needs to be transmitted by all
the decoding relays through orthogonal channels even when
operating on the same frequency band. Hence, there is a
need to design the orthogonal channels through well known
techniques; space-time code design being one of them.

Space-time block code (STBC) is a well known method,
which reduces the average error probability by achieving
coding and diversity gains. These codes were initially designed
for co-located multiple-input multiple-output (MIMO) systems
and were principled on transmitting multiple copies of the
same data stream across a number of antennas. Various codes
[8], [9] were designed for MIMO systems in which we have
the exact information about the number of transmitting and
receiving antennas. However, for ad hoc networks in general
and OLAs in particular, we cannot predict the number of
participating nodes that are able to decode the message and
cooperatively relay the information to the unknown number
of nodes in the next hop. This relaying of information using
orthogonal space-time codes by the nodes that are spatially
distributed is known as distributed space-time block coding
(DSTBC).

Although an extensive material is available for STBCs of
general MIMO systems, very few literature is available on the
design of DSTBCs, and most of them do not completely satisfy
the concept of distributed and randomized phenomenon. In
general, the authors have assumed the assignment of STBC
columns to the cooperating nodes [10]. More specifically, if
an STBC is an P x M matrix, each column of the STBC
matrix is assigned to each of the cooperating nodes by some
central entity. These proposed DSTBCs achieve full diversity,
i.e., diversity order equal to M when N ≤M , where N is the
number of cooperating nodes. Whereas, in case of N > M , the
loss in the diversity occurs. Some other works have considered
the random assignment of space-time code columns or signa-
ture vectors on equi-probable basis [11] and by considering
other stochastic randomization techniques [12]. The authors of
these papers have observed the effect of increasing diversity
on the probability of error. Whereas, in [13] the authors
have proposed cascaded orthogonal space-time block code
(COSTBC) for multi-hop network considering amplify-and-
forward (AF) relaying. All of these works are performed by
either considering the DF case for multiple relays between
a single source destination pair, i.e., for two hop networks978-1-4799-0959-9/14/$31.00 c© 2014 IEEE
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Fig. 1: 2D grid strip network layout.

only, and the AF relaying for multi-hop networks. To the
best of our knowledge, none of the authors have considered
the case of multi-hop cooperative network using DF relaying.
Therefore, this paper mainly focuses on the design of partially
randomized and distributed space-time code for DF based
multi-hop cooperative communications in an OLA network.

In this paper, we consider a two-dimentional (2D) grid strip
network geometry in which the number of nodes is placed
uniformly along the 2D grid. Strict boundaries have been
considered to group the number of nodes in each hop, which
remain the same for each hop. We have also compared the
performance of 2D grid strip topology with the 2D co-located
groups topology. For now we have considered the orthogonal
STBCs by considering the deterministic number of nodes in
each hop. However, the number of DF nodes is still unknown a
priori. The system is modeled by considering the flat Rayleigh
fading channel with path loss effects. It has also been assumed
throughout this work that the receivers have perfect channel
state information (CSI).The case of out-dated CSI or no CSI
is left as a future work.

The rest of the paper is organized in the following manner.
In Section II, the two network models are presented along
with the complete network parameters. Section III describes
the transmission strategy in context of the Markov chain
modeling along with the transition probability matrix for the
two topologies. Results and analysis have been discussed in
Section IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL

Consider an extended network of nodes that are arranged
along a 2D grid, making a 2D strip cooperative network
as shown in Fig. 1. Each node is a distance d apart from
the adjacent nodes along each dimension. For our case, we
assume that the nodes, which decode the message in a hop,
i.e., the nodes represented by filled circles in Fig. 1, relay
it synchronously to the nodes in the next hop using an
orthogonal space-time block code. In each hop of the 2D strip
network, the receiving nodes decode the message on the basis
of a modulation dependent threshold. The comparison of the
received signal-to-noise ratio (SNR) with the threshold is done
at the output of the diversity combiner, and if the received SNR
is greater than or equal to this threshold, the node will be able
to decode the message and vice versa.

For the 2D strip network shown in Fig. 1, the nodes are
numbered from top to bottom and then from left to right. The
length of the level or hop is the number of nodes present
along the horizontal direction, while the number of nodes
along the vertical direction represents the width of the hop.
The product of length and width gives the total number of

nodes present in one hop of the 2D strip network. In general,
we have, M = L×W , where the total number of participating
nodes in each hop is, M , L is the length, and W is the
width of a hop. In case of M number of nodes in each
hop, we consider to use the orthogonal STBC for M transmit
antennas, i.e., STBC having M orthogonal columns. Consider
a block of symbols s =

[
s1 s2 · · · sb

]T
to be transmitted

cooperatively towards the destination using M nodes of a
level, where [·]T denotes the transpose operation and b is
the total number of symbols that makes a message block.
The relay nodes in the nth level use orthogonal STBC to
cooperatively transmit the information symbols to the next
(n+1)th level nodes on orthogonal channels. The received
signals in P time slots on a kth node of level (n+ 1) can
be represented as

y
(k)
(n+1) = PtG

(
h(k) ◦ I (n)

)
+ z, (1)

where y
(k)
(n+1)∈ CP x 1, i.e., y(k)

(n+1) =
[
y
(k)
1 y

(k)
2 · · · y

(k)
P

]T
is the received signal vector at the kth node of the
(n+1)th hop and P t is the transmitted power, which is
assumed equal for each node. The matrix G∈ CP x M

is the complex orthogonal STBC having P rows and
M columns, i.e., STBC for M number of cooperating
nodes, and transmission of each message block from one
level to the next takes on P time slots. The vector h(k)∈
CM x 1, i.e., h(k) =

[
h
(k)
1 h

(k)
2 · · · h

(k)
M

]T
is the channel

vector and the subscript of individual elements denotes
the transmitting node from the previous level. The vector
I (n) =

[
I1 (n) I2 (n) · · · IM (n)

]T
is the indicator or

state vector for the nodes of the previous nth level and its
elements take on binary values indicating the DF nodes of the
previous level. For instance, if the first node of the previous
level has decoded the information, then I1 (n) = 1, otherwise
I1 (n) = 0. The vector, z, is the complex Gaussian noise
vector and the mathematical operator ◦ denotes the Hadamard
product between two vectors.

Each h
(k)
j from the channel vector represents the fading

channel from the jth relay node of the nth hop to the kth

receiving node of the (n+1)th hop. The channels between jth

transmitting node from the previous level to one of the node
of next level are stacked to form a vector and this vector
is represented in (1) as, h(k). Each of these channel gains
between a node pair also takes into account the path loss
between them. Therefore, we define h

(k)
j as, h(k)j =

αjk

dβjk
,

here αjk is the complex Gaussian random variable with zero
mean and unit variance representing Rayleigh fading, djk
is the Euclidian distance between the two nodes, and β is
the path loss exponent that can be in range of 2-4. The
channel is assumed static during the transmission of one block.
Therefore, h(k)j remains constant for the transition of one
message block. At each kth receiver, decoding takes place
by using the decoding matrix as given in (2), i.e.,

s̃(k) = Hy(k)
(n+1). (2)
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Fig. 2: 2D Co-located groups topology.

In (2), H= GH is the decoding matrix and is assumed
to be known at receiver and [·]H represents the Hermitian
operator. The above equation shows the maximal ratio com-
bining (MRC) at the kth node, Where, s̃(k) is the received
message block. After substitution of respective matrices, the
above expression can be represented as

s̃(k) =
∑
j∈Nn

|h(k)j |
2s. (3)

This shows that the whole block of symbols will be received
with a gain of |Nn|, where |Nn| is the cardinality of set Nn,
which consists of the indices of the nodes that decoded the
signal perfectly at the nth hop. Similarly, the message signal
in the form of block will be received at each node of the
(n+1)th level. The decision of the node to decode the message
perfectly, as mentioned before, depends upon the transmission
threshold, τ , i.e., if the received power at the kth node is
greater than or equal to τ , the node will correctly decode the
message block. Hence the expression for the received power
from (3) can be given as

Pr
(k)
(n+1) = Pt

∑
j∈Nn

|h(k)j |
2. (4)

From (4), it can be observed that the received power at
a receiving node depends on the transmitted power, distance
between the adjacent nodes, path loss exponent, and Rayleigh
fading channel gain of the nodes that decoded the message
correctly in the previous nth hop. This channel gain from the
nodes that have correctly decoded, depends upon the Euclidean
distance between the nodes. It has been assumed that all the
nodes that correctly decode the message in a hop or level, relay
the symbols of a message block to the nodes in the next level
at the same time, i.e., there is perfect transmit synchronization
between the nodes along with perfect timing recovery at each
receiver [2].

A. 2D Co-Located Groups Topology

In this subsection, we consider a different topology in which
the nodes in each level are placed closely in a co-located
fashion to form a group as shown in Fig. 2. The only difference
between the distributed 2D grid strip topology and the 2D co-
located topology is the distance between the adjacent nodes,
which is quite negligible for the co-located group case. Hence,
this negligible spacing between the nodes can therefore be
ignored. The only distance that can be taken into consideration
is the inter-group distance, and that can be represented as
D ≈ Ld, where L is the number of co-located nodes present
along the length in each group and d is the inter node distance
in the distributed topology. This means that all nodes of one
group are approximately D distance apart from the nodes

of the group in the next level. All other assumptions, e.g.
synchronization and timing recovery will also remain valid
for this model. Similarly, the co-located nodes from each
group that decodes the message use orthogonal STBCs to
cooperatively transmit the message to the group of nodes in the
next level and therefore (1) remains valid for this case also.
The only difference as mentioned before is the inter-group
distance, D, instead of inter-node distance, d, which in turn
effects the path loss and so the channel gain between any two
transmitter receiver node pair. i.e., h(k)j can now be expressed
for co-located topology as, h(k)j =

αjk
Dβ

.

III. TRANSMISSION MODELING

As it can be deduced from (1) that the decision of the nodes
of the present level to decode the message block, only depends
upon the nodes that have decoded the message in the previous
hop or level only. Therefore, this network behavior can be
modeled using Markov chain, where each node in a hop can
either be in state 1 or 0 if it has perfectly decoded or not,
respectively. Hence, the state of each jth node of nth level or
time instant, can be represented by a binary indicator random
variable as used in (1), i.e, Ij(n).

Therefore, the state of the network at any time instant n can
be represented as M -bit binary word Ĩ(n). This indicator RV
collectively represents the state of each node of present hop
as

Ĩ (n) =


I1 (n) I(W+1) (n) · · ·I(L−1)(W+1) (n)
I2 (n) . .
. . . .
. . . .
. . . .

IW (n) I2W (n) . . . IM (n)

 . (5)

For example, from Fig. 1, at level (n+ 1), I1(n+1)=1, I2(n+
1)=0, I3(n + 1)=0, and I4(n + 1)=1. Therefore , Ĩ (n+ 1) =[
1 0
0 1

]
. In order to convert the above state representation into

linear or M -tuples form, i.e., I =
[
I1 I2 · · · IM

]T
, vec

vector operation is applied to (5) as I(n) =
{
vec

[
Ĩ (n)

]}T
.

Hence, state of the network in Fig. 1 at time instant n + 1
can be expressed as I(n + 1) = [1001]

T . At this point 2D
Markov chain has taken the form of 1D representation. The
state space will have 2M -1 transient states in addition to an
absorbing state that eventually terminates the transmission. An
absorbing state is the state in which all the nodes of a hop fail
to decode the message block, thus terminating the message
propagation.
A. Transition Probability Matrix

The Markov chain, I(n) can be defined completely by
union of two sets, the transient state space X , i.e., X =
{1, 2, ..., 2M−1} and {0} the absorbing state. Each element
of the set X will take on a binary word representation form,
which can be termed as indicator or state vector. The other
set {0} is the set of all zeros and there is always a non-
zero probability of transiting to this state which increases
asymptotically as, lim

n→∞
P {I (n) = 0} ↗ 1.



The concept of absorption with non-zero positive probability
results in the quasi-stationary distribution for the given Markov
chain [2]. An irreducible and right sub-stochastic transition
probability matrix P having dimensions

(
2M − 1

)
×
(
2M − 1

)
is then formed by removing the transitions to or from the
absorbing state. The Perron-Frobenius theorem is then invoked
on P to get the maximum eigenvalue and the left eigenvector.

Each entry of the transition probability matrix represents
the probability of being transiting to one of each possible
transient states. Whereas, each state tuple depends upon the
binary state of each node at any specific level or time instant
say n, i.e., the decoding probability of kth node in nth

level can be given as P
{
I(k)(n) = 1

}
= P

{
Pr(k) (n) ≥ τ

}
.

Whereas, 1 − P
{
Pr(k) (n) ≥ τ

}
or I = 0 is the probability

of being in outage, and P{Pr(k)(n) ≥ τ} can be written

as P{Pr(k)(n) ≥ τ} =
∞∫
0

fpr(k) (y) dy. In this expression

fpr(k)(y) is the probability density function (PDF) of received
power at node k. The distribution of received power Pr
depends upon the topology in which the nodes are arranged,
i.e, the PDF of received power at a node may follow different
distributions in case of distributed and co-located topologies.

1) Transition Probability Matrix for 2D Grid Strip Network
Topology: For distributed 2D grid strip topology, the received
power at the kth node is the sum of the the exponen-
tially distributed powers from the previous level with distinct
parameter λ(k)j . These powers are exponentially distributed
because of the square of each channel gain as in (3), and
the sum of these |Nn| exponentially distributed powers results
in a hypoexponential distribution [2], that can be given as,

f
(k)
pr (y) =

Nn∑
j=1

C
(k)
j λ

(k)
j exp(−λ(k)j y). Hence, one-step proba-

bility of transiting from state a to state b will be,

Pab =
∏

k∈N(b)
n+1

 ∑
j∈N(a)

n

C
(k)
j exp(−λ(k)j τ)


∏

k∈N(b)
n+1

1−
∑
j∈N(a)

n

C
(k)
j exp(−λ(k)j τ)

. (6)

where
∑

j∈N(a)
n

C
(k)
j exp(−λ(k)m τ) is the probability of success

at node k, λ(k)j =
(djk)

βσ2
j

Pt , and C(k)
j =

∏
ς 6=j

λ(k)
ς

λ
(k)
ς −λ(k)

j

. The

sets N(b)
n+1 and N(b)

n+1 represents the indices of DF nodes and
unsuccessful nodes (nodes having I(k)(n) = 0) of state b at
the (n+ 1)th level, respectively.

2) Transition Probability Matrix for 2D Co-Located Groups
Topology: Similarly in this case, the received power at each
node in group again will be the sum of exponentially dis-
tributed powers from the DF nodes of the previous nodes but
with same parameter λ̃ =

Dβσ2
k

Pt . As the inter-node distance
is almost negligible and the nodes in a level are co-located to
form a group therefore, they will have the same path losses,
and distribution parameter to the nodes in the next level.

Hence, the exponentials having same parameter will result
in a Gamma distribution for the received power [3], and the
received power PDF will be,

f (k)pr (y) =
1

(|Nn| − 1) !
λ̃|Nn|y(|Nn|−1)exp(−λ̃y). (7)

Hence, the one step success probability at kth node of the

next level is, exp(−λ̃τ)
|Nn(a)|−1∑

j=0

(λ̃τ)
j! . The one step success

probability in (6) will be replaced by this expression for the
co-located groups case, and the final expression then comes
out to be,

Pab =
∏

k∈N(b)
n+1

exp(−λ̃τ)
|N(a)
n |−1∑
j=0

(
λ̃τ
)

j!


∏

k∈N(b)
n+1

1− exp(−λ̃τ)
|N(a)
n |−1∑
j=0

(
λ̃τ
)

j!

. (8)

IV. RESULTS AND ANALYSIS

In this section, we present the results that demonstrate the
system performance by the implementation of different STBCs
for different number of nodes, M , in each level, followed
by some comparisons and analysis. We first present the
relative comparison of one-hop success probability obtained
analytically through Perron-Frobenius eigenvalue, ρ, of the
transition matrix in (6) for M = 6, but with the variation in the
values of L and W for distributed case. This one-step success
probability, ρdis, for distributed case is shown as function of
SNR margin, γ, where γ is the normalized SNR with respect
to τ , which can be defined as γ = Pt

σ2τ . The values for some
other system parameters are d = 1, β = 2 or 3, and Pt = 1W .

Fig. 3 demonstrates the behavior of one-hop success prob-
ability, ρdis, for the distributed network topology for β = 2.
Hop size M is kept constant for this case, i.e., M = 6, and dif-
ferent combinations of L and W are considered. To carry out
this comparison, we used orthogonal STBC for six antennas
given in [9] and it takes on 30 time slots to transmit a block of
18 symbols cooperatively from one hop to the next. Generally,
it can be observed that for all possible combinations of L and
W , one-hop success probability increases with the increase
in γ, where increase in γ results in decrease of τ , making
more nodes to correctly decode the information. However,
for a specific value of γ, the first two 2D distributed cases
seem to achieve better ρdis as compared to 1D distributed
case, i.e., L = 6 and W = 1. For the 2D case, the one
combination having greater number of nodes across the width,
(L = 2, W = 3) provides better ρdis as compared to the other
combination in which there are more nodes across the length
of a hop (L = 3, W = 2). The reason behind this behaviour
is the Euclidean distances between the nodes of two hops that
are least for the first case, on average, as compared to the
other two cases. This distance in turn effects the path loss and
hence the performance gain.

Fig. 4 represents the difference between the one-hop success
probability, ρdis, obtained from simulations and from analyti-
cal model. The value of parameter M used in Fig. 4 are M = 4
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Fig. 3: One-hop success probability for 2D distributed grid network.
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Fig. 4: Comparison of ρdis obtained through simulations and analyt-
ical model.

(L = 2, W = 2) and M = 6 (L = 3, W = 2) for different
values of γ. The plot shows that the analysis and simulation
results match closely for different cases. In simulations, the
one-hop success indicates that at least one node decodes the
message correctly. The forthcoming results are all based on
theocratical models.

In Fig. 5, the network performance is analyzed by evaluating
the coverage in terms of maximum number of hops traversed
or the maximum number of nodes along the length of network
that receives the information with a given quality of service
(QoS) constraint, η. In our case, we obtain the maximum
coverage when we require our system to operate at above 90%
success probability for all hops, i.e., η ≥ 0.9. Now if ρdis is the
one-hop success probability then the success probability until
`th hop will be ρ`dis. Therefore, to transmit the information
block to `th hop with 90% success probability, we require,
ρ`dis ≥ η. From here it can be deduced that the maximum
number of hops that can be traversed by the information
blocks on average, with the required success probability are
` ≤ lnη

lnρdis
. This maximum hop value, ` when multiplied with

2 4 6 8 10 12 14
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

SNR margin, γ (dB)

C
ov

er
ag

e 
(n

um
be

r 
of

 n
od

es
),

 C

 

 

L=2,W=3
L=3,W=2
L=6,W=1

β=2

Fig. 5: SNR margin vs. maximum coverage for M = 6.
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Fig. 6: SNR margin vs. maximum coverage for various values of M .

the L results in the average number of nodes, C, that receives
the information. The plot is generated for the three mentioned
geometries for M = 6, and it can be seen from Fig. 5 that the
combination L = 2 and W = 3 provides the highest coverage
value at each possible SNR margin as compared to the other
two combinations of L and W .

Fig. 6 shows the general effect of increasing hop size M
on the coverage for various values of W , and for a fixed L.
This figure shows that while considering a certain geometry
of nodes, the increase in M results in higher coverage for the
same required SNR margin.

The overall comparison of the distributed 2D strip network
topology is being summarized in Table I, where P is the
number of time slots that an STBC takes on, Td is the overall
delay, and R is the rate. The table quantifies the effect on
various parameters for a fixed coverage range, i.e., C = 24,
where nodes can be arranged in different geometries. For the
case in which M = 6, L = 2, and W = 3, we use an STBC of
3/5 rate provided in [9] that transmits a block of 18 symbols
from one hop to the next in 30 time slots. Therefore, the



TABLE I: Comparison for optimal STBC and node geometry

M L W STBC Coverage P Td R γ
C ` P × ` (dB)

4 4 1 3/4 rate 24 6 4 24P 3sym/24P 11.27
4 2 2 3/4 rate 24 12 4 48P 3sym/48P 5.85
6 6 1 3/5 rate 24 4 30 120P 18sym/120P 12.19
6 3 2 3/5 rate 24 8 30 240P 18sym/240P 6.50
6 2 3 3/5 rate 24 12 30 360P 18sym/360P 3.67
8 8 1 1/2 rate 24 3 8 24P 4sym/24P 13.04
8 4 2 1/2 rate 24 6 8 48P 4sym/48P 7.26
8 2 4 1/2 rate 24 12 8 96P 4sym/96P 2.45

transmission of a message block to the 24th node or 12th

hop, takes on 360 time slots. Thus, 3/5 rate STBC transmits
the message blocks to 24th node with a maximum rate of
18 symbols /360P . From Table I, it can be inferred that if
the horizontal stretch of a hop contains more nodes, then the
information is transmitted towards the far away nodes with
lower delay and at high SNR margin. Whereas, if we increase
the number of nodes along the width and keep L constant then
with the increase in W , diversity increases and information
transverses towards its destination with higher delay but at a
lower SNR margin. This shows that there is a tradeoff between
delay and required SNR margin. Hence, the selection of an
optimal STBC and node geometry mainly depends upon the
type of application or scenario in which we want to operate,
i.e., if the application is more energy-constraint then we select
the one that requires lower SNR margin, e.g. half rate STBC
with L = 2 and W = 4, otherwise, for delay sensitive
applications, linear or 2D geometry having larger L should
be used.

In the end, we make a comparison between two topologies
discussed before, the distributed and co-located groups topol-
ogy. The eigenvalues for distributed and co-located groups
topology gives the one-hop success probability and are denoted
as ρdis and ρcol, respectively. In Fig. 7, the difference between
the two success probabilities, ρdis − ρcol is plotted vs. the
SNR margins for path loss exponent of 2, and that results in a
Gaussian-shaped curve. These curves are generated for three
different topologies keeping M equal to 6. Fig. 7 shows that
the maximum difference increases if we arrange more nodes
along vertical direction, i.e., larger W in distributed case.
These positive difference curve shows that co-located case
performs better than distributed one at lower SNR margins.
Although, the plots show that the co-located topology gives
better success probability than distributed one, however, in
some sensing scenarios co-located geometry does not provide
accurate or updated information about the points that are
spatially distributed. Hence, for these scenarios the nodes need
to be arranged in a distributed manner.

V. CONCLUSION

We have introduced a way to construct orthogonal channels
by using STBCs for 2D opportunistic large array sensor
networks. Deterministic STBCs are made random with the
help of indicator or state vector, which are then used by
the random opportunistic nodes at each level. Markov chain
and Perron-Frobenius eigenvalue decomposition are used to
completely model the network state and the transmission
strategy. The performance of each parameter is then analyzed
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Fig. 7: One-hop success probability differences between co-located
and distributed topologies.

at different SNR margins. In future, we aim to design a fully
randomized STBC for OLA network, considering randomized
node positions and for different fading environments.
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