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Performance Analysis of
Linear Cooperative Multi-Hop Networks
Subject to Composite Shadowing-Fading
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Abstract—We consider a cooperative multi-hop line network,
where a group of nodes cooperatively transmits the same message
to another group of nodes, and model the transmission from
one group to another as a discrete-time quasi-stationary Markov
process. We derive the transition probability matrix of the
Markov chain by considering the wireless channel exhibiting
composite shadowing-fading. The shadowing is modeled as a
log-normal random variable (RV) and the multipath fading as
a Rayleigh RV, where the multiplicative model for the mixture
distribution known as Suzuki (Rayleigh-lognormal) distribution
has been considered. The sum distribution of the multiple Suzuki
RVs is approximated by a single log-normal RV by using the
moment generating function (MGF)-based technique. This MGF-
based technique uses Gauss-Hermite integration to present the
sum distribution in closed form. We quantify the signal-to-noise
ratio (SNR) margin required to achieve a certain quality of
service (QoS) under standard deviation of the shadowing. We also
provide the optimal level of cooperation required for obtaining
maximum coverage of a line network under a given QoS. Two
topologies for linear network are considered and the performance
of each topology under various system parameters is provided.
The analytical results have been validated by matching with the
simulation results.

Index Terms—Cooperative communication, opportunistic large
array, composite shadowing-fading, Suzuki distribution, moment
generating function, Markov chain.

I. INTRODUCTION

H IGH capacity aspect in future generation wireless sys-
tems is targeting a lot of attention because of the

constantly growing demands for multimedia services and web-
related contents. However, the data rate capability of the
wireless networks is limited by channel fading and other
transmission impairments. In order to combat channel fading,
an efficient technique is to exploit the spatial diversity by
having multiple radios transmit the same message signal. The
technique, known as distributed multiple-input multiple-output
(MIMO) was proposed as compared to the co-located MIMO,
where the main difference is that the multiple antennas at the
front-end of the transmitters are distributed among spatially
separated radio nodes. Therefore, multiple nodes create a
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virtual antenna array acquiring higher diversity gains [1]. This
style of cooperative transmission (CT) is becoming popular
in the past several years in both the sensor and the cellular
networks.

One fast and low overhead CT scheme for physical layer
flooding in large networks is Opportunistic Large Array (OLA)
[2]. In an OLA transmission, a group of nodes under or-
thogonal fading channels form a level and transmits the same
message to another level of nodes. All nodes that decode the
message successfully from the previous level nodes, relay the
message together. In an OLA transmission, a node does not
coordinate with other relays and each node decide to take
part in transmission independently. OLA broadcast are energy-
efficient candidate for large dense wireless sensor networks
and can provide range extension in mobile networks [3].

OLA networks have attracted a great interest from research
community and considerable literature on OLA transmission
has appeared [4]. The behavior of dense wireless cooperative
networks is studied in [5]. It was shown that if the decoding
threshold is below a particular value, the message can be
transfered to the receiver irrespective of how far it is. The
authors considered an infinite node density per unit area,
emitting a constant power from that area. This continuum
assumption may not be an appropriate candidate for finite
density networks. A study on finite density cooperative net-
work has been done in [6]. The authors derived an analytical
model for a finite density cooperative line network. Under
fading channel environment, they provided an upper bound
on the network coverage. They modeled the channel as an
independent Rayleigh fading channel and path loss with an
arbitrary path loss exponent. However, they only considered
small-scale fading. Several other approaches for small scale
fading are considered in [7]-[9].

In practical wireless systems, both small-scale as well
as large-scale fading known as shadowing are present [10].
According to our literature survey there is no significant work,
which has considered composite shadowing-fading for OLA
cooperative networks. Also, one faces several challenges in
recruiting relay in a sensor network, e.g., assume a hazardous
situation where it is desirable to obtain a particular information
with the use of sensor robots as the environment is unsafe for
humans (for instance, a poisonous chemical discharge in a
factory). However, it is also desirable to deploy the sensor
robots in such a way that the connectivity is maintained
between the robots and the information can be exchanged
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over a specified distance. Following questions need answers,
“what transmit power is required for the sensors to obtain
a certain reliable communications, what level of cooperation
is needed, what kind of topology is optimal, would an equi-
distant topology be helpful or co-locating groups of nodes
would work, what if environment is shadowed in addition
to multi-path fading?” The answer to these questions is the
subject matter of this paper.

In this paper, we study the performance of cooperative
multi-hop linear network under composite shadowing-fading.
This kind of network can be used as a prelude to study
more general random 2D networks operating under composite
channel. Typical applications of this linear network include
structural health monitoring of buildings and bridges where
the nodes are aligned in a regular linear pattern, finding a
route path from the source to the destination in mobile ad hoc
networks (MANETS), and fault recognition in transmission
lines for the future smart grid systems. This topology would
also be consistent with a plastic communication cable, where
sensor nodes are embedded in a plastic wire and cooperative
transmission is performed to transmit the source message from
one end of the wire to another. These wires find practical
applications in air-industry having lighter weights as compared
to general copper wires and reduce the unwanted high electric
fields in the surroundings [11].

For the network at hand, we model the small-scale fading
as Rayleigh distribution and the shadowing as log-normal
distribution and the resulting composite distribution is given
by the Suzuki distribution [12]. The received signal in a
cooperative network at a node is the sum of multiple signals
transmitted over orthogonal fading channels. In this paper, we
do not address how the orthogonal channels are assigned, other
than to suggest that in a line network, they can be assigned as a
repeating sequence, e.g. WXYZWXYZ..., such that the sequence
WXYZ is at least as long as the hop distance. Each of the
transmitted signal is affected by small-scale fading as well as
shadowing. However, there is no closed-form expression for
the probability density function (PDF) of the sum of multiple
Suzuki RVs [10].

In literature, different approximation techniques have been
proposed to find the sum distribution of multiple Suzuki
RVs. In [13], a technique based on an extension of Fenton-
Wilkinson’s [14] approach is proposed. It is a two step
approximation process in which a Suzuki RV is approximated
by a log-normal RV in the first step and then by using the
Fenton-Wilkinson’s method, an approximate sum distribution
of the multiple log-normal RVs to a single log-normal RV is
achieved. In [15], the sum of Suzuki RVs is approximated by
a single Suzuki RV. However, this methods does not consider
the problem of addressing the sum by a single log-normal RV.
We use the method proposed in [16] to approximate the sum
of Suzuki RVs by a single log-normal RV. This method uses
moment generating function (MGF) as a tool to approximate
the sum distribution. This method requires that both the MGF
of log-normal and Suzuki RVs are to be in closed-form, neither
of which exist in closed-form. Therefore, it uses the Gauss-
Hermite [17] expansion of the MGFs of both log-normal and
Suzuki to find the closed-form expression for it.

After incorporating the wireless channel into our quasi-

n-1 n n+1

d

Fig. 1. System model for M = 4.

stationary Markov chain model, this paper quantifies the effect
of various system parameters such as SNR margin, number of
cooperative nodes in a level, standard deviation of shadowing,
and path loss exponent on the coverage of the network. We
also provide optimal regions of cooperation that can provide
us maximum coverage under a given quality of service (QoS),
SNR margin and shadowing standard deviation constraint. The
coverage of a network under three different channel model is
compared, i.e., fading, shadowing, and composite shadowing-
fading. At the end, we also compare two different topologies
for line networks; an equi-distant topology and a co-located
groups of nodes topology. We have shown that the equi-distant
topology provides maximum coverage for a given shadowing
standard deviation then the co-located topology.

The organization of the paper is follows. Section II de-
scribes the network layout. In Section III, we model our
network as a discrete-time quasi-stationary Markov chain,
while in Section IV, we derive the transition probability matrix
of the Markov chain. We also derive the sum distribution of
multiple Suzuki RVs and log-normal RVs as a single log-
normal RV in Section IV. Section V validates our analytical
model to simulation results, and discuss other analytical results
and system performance. Section VI concludes the paper and
gives directions for the future work.

II. SYSTEM DESCRIPTION

Consider a 1-dimensional network with infinite number of
nodes where the adjacent nodes are at a distance d away from
each other as shown in Fig. 1. The network is divided into
non-overlapping sets of nodes, such that each group or level
comprises M number of nodes. The M nodes in one level
cooperate with each other to forward the same message signal
to the M nodes of the next level. However, only those nodes
take part in transmission who have decoded the data perfectly
from the transmission of previous level nodes. These nodes
are called decode-and-forward (DF) nodes. The number of
DF nodes in a level is unknown apriori, implying that the
network is opportunistic. A node become DF node when the
signal-to-noise ratio (SNR) of the received signal, after post-
detection combining, is greater than or equal to a modulation
dependent threshold, τ . The DF nodes in Fig. 1. are shown by
filled circles. We assume same transmit power, Pt, for all the
nodes and label the set of indices of DF nodes at time instant
or level n by Nn. For example, from figure, Nn+1 = {1, 3},
Nn = {1, 2}, and Nn−1 = {1, 4}. The received power at a kth
node at time instant n is given by

Prk(n) =
Pt

dβ

∑
m∈Nn−1

Smk

(M −m+ k)β
, (1)

where the summation is over the DF nodes in the previous
level (n − 1) and β is the path loss exponent with a usual range
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of 2-4. The composite channel coefficient, Smk, from node m
in level (n − 1) to node k in level n is modeled as a Suzuki
RV, which is a combination of Rayleigh and log-normal RV.
We model the multi-path effect as Rayleigh distribution and
the shadowing effect as log-normal distribution. The PDF of
the Suzuki distribution is given by

p(s) =

∫ ∞

0

s

w2
exp

(
− s2

2w2

)
1√

2πwσ

exp

(
− (logw − μ)

2

2σ2

)
dw, (2)

where w is the Rayleigh parameter and μ and σ2 are the
mean and variance of the log-normal RV [12]. Both μ and
σ are expressed in decibel. The standard deviation, σ, is the
dB spread of the channel and its typical value is between 5-
12 dB for wireless channels depending upon the severity of
the shadowing. In this work, we assume that nodes in a level
have perfect synchronization so that the DF nodes transmit the
signal at the same time.

III. MODELING BY MARKOV CHAIN

We represent the state of each node by a binary indicator
RV, I, such that at a time instant n the state of the kth node,
Ik(n) = 1 represents that node k has decoded successfully
and Ik(n) = 0 shows that node k has not decoded the data
correctly. In the same way, the state of each level can be
represented as X (n) = [I1 (n) , I2 (n) , ..., IM (n)] where the
outcome of X (n) is an M-bit binary word. Each outcome
is a state, and there are 2M total number of states, starting
from 0 to 2M − 1 in decimal. If in represents the state at
time instant n then from Fig. 1. in = {1100} in binary,
and in = 12 in decimal. It can be noticed that X is a
memoryless Markov process because the state at any time
depends upon the transmissions from the previous level only.
Further investigation reveals that the Markov chain, X , can
reach an absorbing state at any point in time with some
nonzero probability, terminating the process of transmission.
At that time the state of Markov chain will be 0 (decimal) and
will happen only when all the nodes in a level fail to decode
the message perfectly. Thus {0}∪T constitute the state space of
the Markov chain X , where T is the finite transient irreducible
state space; T =

{
1, 2, ..., 2M−1

}
and 0 being the absorbing

state such that

lim
n→∞P {X (n) = 0} ↗ 1 a.s. (3)

The Markov chain, X , can be completely characterized by
finding the transition probability matrix, P, corresponding to
X . If we remove the transitions to and from the absorbing
states the resulting P is square, irreducible and right sub-
stochastic with a dimension of (2M − 1)× (2M − 1) [22].

By the theory of Markov chain, a distribution u =
(ui, i ∈ T) is called ρ-invariant distribution if u is the left
eigenvector of this particular transition matrix, P, which
corresponds to ρ, where ρ is the maximum eigenvalue of
P, i.e., uP = ρu. In the meantime ∀n,P {X (n) = 0} > 0,
therefore ultimate killing is certain. However, we are interested
in finding the distribution of the transient states, just before

the absorbing state is reached. This limiting distribution is
known as the quasi-stationary distribution of the Markov
chain [22], and is independent of the initial conditions of the
process. The ρ-invariant distribution for one-step transition
probability matrix of the Markov chain on T give us this
unique distribution. To find the quasi-stationary distribution,
we first calculate the maximum eigenvector, û, of P. Defining
u = û/

∑2M−1
i=1 ûi, as a normalized version of û that sums

to one gives the quasi-stationary distribution of X . Hence the
unconditional probability of being in state j at time instant n
is given as

P {X (n) = j} = ρnuj , j ∈ T, n ≥ 0. (4)

We also let Φ = inf {n ≥ 0 : X (n) = 0} denotes the end of
survival time, i.e., the time at which the killing occurs. It
follows then

P {Φ > n+ n0|Φ > n} = ρn0 , (5)

while the quasi-stationary distribution of the Markov chain is
given as

lim
n→∞P {X (n) = j|Φ > n} = uj , j ∈ T. (6)

IV. FORMULATION OF TRANSITION PROBABILITY MATRIX

In this section, we find the transition probability matrix
of the Markov chain, which provides the quasi-stationary
distribution of the Markov chain.

A. Log-normal Approximation of the Sum of multiple Suzuki
RVs for Composite Channel

Now we find the state transition probability matrix, P, of
the network, by considering the channel as composite fading
channel. Let i and j represent the two states of the system
at time instant (n − 1) and n, respectively, such that i, j ∈{
1, 2, ..., 2M − 1

}
, where i and j are the decimal equivalent

of the binary word formed by the set of binary indicator RVs.
The received SNR at time instant n on the kth node is given as
γk(n) = Prk(n)/σ

2
noise, where σ2

noise is the noise variance
at the kth receiver, and Pr is the received power as given in
(1). For all the nodes in a level we assume identical noise.
Now for a node k, the conditional probability of being able to
decode successfully at time n is given as

P {node k of level n will decode |ϕ} =

P {Ik(n) = 1|ϕ} = P {γk(n) > τ |ϕ} , (7)

where the event ϕ is defined as ϕ = {X (n− 1) ∈ S},
indicating that the previous state is a transient state. Similarly,
the probability of outage or the probability of Ik(n) = 0 is
given as 1− P {γk(n) > τ |ϕ}, where

P {γk(n) ≥ τ |ϕ} =

∫ ∞

τ

pγk|ϕ(y)dy, (8)

where pγk|ϕ is the conditional PDF of the received SNR at
the kth node conditioned on the state X (n − 1). It can be
observed that the received SNR at a certain node is the sum of
the finite SNRs from the previous level nodes1, each of which

1assuming maximal ratio combining for coherent modulation scheme
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follow Suzuki (Rayleigh-lognormal) distribution. However, the
distribution of the sum of Suzuki RVs does not exist in closed-
form [10]. Therefore, to find the sum distribution of Suzuki
RVs, we use the moment generating function (MGF)-based
method as proposed in [16]. The MGF of a RV Y is given by

ΨY (s) =

∫ ∞

0

exp(−sy)pY (y)dy. (9)

MGF exhibits two important properties; first, MGF is the
weighted integral of the PDF with adjustable parameter s
and second, the MGF of the sum of independent RVs can
be expressed as the product of the MGFs of individual RVs
as given by

Ψ(
∑

N
k=1 Yk)

(s) =

N∏
k=1

ΨYk
(s). (10)

We approximate the sum of N Suzuki RVs (S1, S2, ..., SN)
by a single log-normal RV Y = 100.1X , where X is a
Gaussian RV. This MGF-based approximation method requires
that both the MGF of Suzuki and log-normal RV need to
be in closed-form. However, the MGF of both the Suzuki
and log-normal RV does not exist in closed-form and can
be numerically computed using the Gauss-Hermite quadrature
integration [17]. In Gauss-Hermite quadrature integration, the
integral is evaluated by an approximate sum where each
component of the summation depends upon a specific weight.
Specifically the MGF of kth Suzuki RV by Gauss-Hermite
integration after discarding the remainder terms can be written
as

Ψ̂Sk
(s;μk, σk) =

C∑
c=1

wc/
√
π

1 + s exp
(√

2σkac+μk

ξ

) , (11)

where C is the Hermite integration order and a large value
of C corresponds to higher accuracy, wc is the weight
corresponding to the abscissas, ac, and ξ is a constant;
ξ = 10/ ln 10. The values of wc and ac for C up to 20 are
available in tabular form in [18]. The μk and σk are the mean
and standard deviation of the kth Suzuki RV. Hence the MGF
of the sum of N Suzuki RVs (S1, S2, ..., SN ) is given as

Ψ̂(S1+S2+...+SN) =
N∏

k=1

Ψ̂Sk
(s;μk, σk), (12)

where each Ψ̂Sk
is given in (11). Similarly, by using the

Gauss-Hermite integration, the MGF of the log-normal RV
Y = 100.1X is given as

Ψ̂Y (s;μX , σX) =

C∑
c=1

wc√
π
exp

[
−s exp

(√
2σXac + μX

ξ

)]
,

(13)
where μX and σX are the mean and standard deviation of the
Gaussian RV X . The task is to find the μX and σX of X as a
function of the mean and standard deviation of the individual
RVs (S1, S2, ..., SN ). The μX and σX can be found by solving
the following two equations

Ψ̂Y (si;μX , σX) =

N∏
k=1

Ψ̂Sk
(si;μk, σk) , at i = 1 and 2.

(14)

By using (11) and (13), Equation (14) becomes

C∑
c=1

wc√
π
exp

[
−si exp

(√
2σXac + μX

ξ

)]
=

N∏
k=1

⎛⎝ C∑
c=1

wc/
√
π

1 + si exp
(√

2σkac+μk

ξ

)
⎞⎠, at i = 1 and 2, (15)

where, as already stated μX and σX are the unknown. The
right hand side of (15) consists entirely of known quantities
and is evaluated twice at s1 and s2. By evaluating at s1 = 0.2
we can find μX , while using s2 = 1.0 gives σX . The values
of s1 and s2 have been found by solving an optimization
problem as listed in [16]. It can be noted that (15) is a non
linear equation and can only be solved numerically. We used
fsolve function in MATLAB to solve it. Once the values
of μX and σX have been calculated, the description of the
sum distribution can be completely specified, i.e., the sum of
Suzuki RVs has been approximated by a log-normal RV with
calculated μX and σX . Hence the conditional probability that
the received SNR (Y (k) = 100.1X

(k)

) at the kth node is greater
than or equal to τ in (8) becomes

P

{
Y (k) ≥ τ |ϕ

}
= P

(
100.1X

(k) ≥ τ
)
=

P

(
X(k) ≥ 10 log τ

)
= Q

(
10 log τ − μX

(k)

σX
(k)

)
, (16)

where Q-function denotes the tail probability; Q(x) =
1
2π

∫∞
x

e−t2/2dt. Thus the success probability of a node de-
pends upon the threshold τ , μX , and σX ; while the μX and σX

further depend on the number N of Suzuki RVs (the number
of DF nodes) and the μ and σ of each Suzuki RV as given in
(15). Equation (16) provides us the success probability of a
single node to decode. For M nodes in a level, consider N(j)

n

and N
(j)

n as the set of indices of those nodes, which are 1 and
0, respectively, at time instant n in state j, then the one-step
transition probability of going from state i to state j is given
by

Pij =
∏

k∈N
(j)
n

{
Q

(
10 log τ − μX

(k)

σX
(k)

)}
×

∏
k∈N

(j)
n

{
1−Q

(
10 log τ − μX

(k)

σX
(k)

)}
. (17)

The one step transition probability is the product of the success
probabilities of those nodes, which decode successfully, times
the product of the outage probabilities of those nodes, which
do not decode successfully. Equation (17) gives one entry of
the matrix P. Similarly, we can find the transition probability
matrix P by finding the transition probabilities for all the
transient state space.

B. Log-normal Approximation of the Sum of multiple Log-
normal RVs for Shadowing Channel

In the previous subsection, we have found the transition
probability matrix P for the composite channel model, but
here we are considering the channel as a shadowing channel.
Shadowing is modeled as a log-normal RV and again there
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Fig. 2. Comparison of analytical and simulation model for M = 2.

is no closed-form expression of the PDF of the sum of log-
normal RVs [10]. There are different approximation techniques
to find the sum distribution for log-normal RVs such as
Fenton-Wilkinson [14], Shwarts and Yeh [20], and Farley [20],
but each of these technique have their respective disadvantages
as mentioned in [19]. Therefore, we use the same MGF-based
method to find the sum distribution of the log-normal RVs
[16]. This method approximates the sum of log-normal RVs
to a single log-normal RV. Approximating the sum of N
log-normal RVs (S̄1, S̄2, ..., S̄N ) to a single log-normal RV
Ȳ = 100.1X̄ , (14) becomes

Ψ̂Ȳ (si;μX̄ , σX̄) =
N∏

k=1

Ψ̂S̄k
(si; μ̄k, σ̄k) , at i = 1 and 2,

(18)
where Ψ̂Ȳ (si;μX̄ , σX̄) is the MGF of the log-normal RV Ȳ ,
and Ψ̂S̄k

(si; μ̄k, σ̄k) is the MGF of kth log-normal RV S̄k.
By putting the MGFs obtained by Gauss-Hermite integration
of both log-normal Ȳ and S̄k, (18) becomes

C∑
c=1

wc√
π
exp

[
−si exp

(√
2σXac + μX

ξ

)]
=

N∏
k=1

(
C∑

c=1

wc√
π
exp

[
−si exp

(√
2σkac + μk

ξ

)])
,

at i = 1 and 2, (19)

where the right hand side again consists of known quantities
and the unknown μ̄X and σ̄X are found by numerically solving
(19) for s1 = 0.2 and s2 = 1.0, respectively. Once the μ̄X

and σ̄X are obtained, Equations (16) and (17) can be used
to find the node success probability and one-step transition
probability under shadowing channel model, respectively. In
a similar way we can find other entries of the matrix P.

V. RESULTS AND SYSTEM PERFORMANCE

In this section, we present our simulation and analytical
results. We obtain all the results by considering the composite
channel model unless otherwise stated. In order to simulate the
composite envelope, we generate the fading and shadowing
processes separately and then multiply them together, while
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Fig. 3. Probability of one-hop success vs. SNR margin for M = 3.

keeping unit mean for the fading envelope [10]. For simulation
purposes, we first assume an initial distribution of the first
hop and then calculate the received power at a node in the
next hop. The indicator function I is set to 1 only if the
received power is greater than the threshold τ . Same procedure
is repeated for all the nodes in the current hop, which forms
the current state and the process continues until an absorbing
(all-zero) state is encountered. Fig. 2. shows the probability
of state distribution of the Markov chain at different hops, for
σ = 10 dB and M = 2. For M = 2, the total number of
transient states are 3, namely {0, 1}, {1, 0}, and {1, 1}, and
this figure shows the probability of being in these transient
states at various hops by using both the simulation results and
the analytical model. The simulation results are obtained by
averaging over one million simulation experiments, whereas
the analytical curves are obtained by using (4). It is clear from
the figure that both the analytical and the simulation results are
quite close to each other, which confirms the accuracy of the
proposed analytical model. It can be noticed for the simulation
results that the initial distribution of all the three states have
nearly equal probability of occurrence, i.e., 1/3. However,
as the hop count increases, the distribution approaches the
quasi-stationary distribution obtained from (4). The probability
of being in a transient state decreases as the hop count
increases, which shows that eventually the transmission will
stop propagating, which is in accordance with Equation (3).
It can be further observed that the slopes of the curves for all
the three transient state remain the same, which means that the
probability of being in either of these states remain unchanged
regardless of the number of hops. Similar results are obtained
for other M , which are not shown here to avoid repetitions.

Before discussing further results, we define a few terms such
as probability of one-hop success, ρ and the SNR margin, Υ.
The probability of one-hop success, ρ, is the probability that
at least one node in a level decodes successfully or, in other
words, the probability that the Markov chain X (n) is in a
transient state T , i.e., P{X (n) ∈ T }. This probability of one-
hop success is given by the Perron-Frobenius eigenvalue of P
[21]. The SNR margin, Υ, is the normalized received SNR at
a node, which is a distance d away from it transmitter such
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Fig. 4. Probability of one-hop success vs. SNR margin for different M ; at
σ = 6dB, and β = 2.

that
Υ =

Pt

dβτ
. (20)

We assume unit Pt and unit d for all the results, while β
and τ have their usual meaning of path loss exponent and the
modulation dependent threshold, respectively. The value of β
is 2 unless otherwise stated. Thus, if SNR margin is 10 dB,
then Pt = 1, d = 1, β = 2, and τ = 0.1. In the same way
we change the SNR margin by changing τ . For Fig. 3. and
onwards all the results are obtained by the analytical model.

Fig. 3. shows the probability of one-hop success ρ, versus
SNR margin Υ for different values of shadowing standard
deviation σ and keeping M = 3 fixed. It can be noticed
that for a specific σ, as the SNR margin is increased, the
probability of one-hop success also increases. However, by
increasing the σ of the log-normal shadowing, the probability
of one-hop success drops at a specific value of SNR margin,
which shows the effect of the severity of shadowing on the
network performance. It can also be noticed that if we increase
the path loss exponent, β, from 2 to 3 then an additional SNR
margin of 6 dB (approximately) is required to achieve the same
ρ. It can further be noticed that all the curves for different σ
converge at higher Υ, which show that by increasing Υ we
can overcome the losses incurred due to composite fading and
path loss.

In Fig. 4., we plot the probability of one-hop success, ρ,
against the SNR margin Υ for various values of cooperating
nodes M . It can be noticed that at a lower value of SNR
margin, a smaller number of cooperating nodes, M , provides
a higher success probability, and vice versa. For instance, at
Υ ≤ 7.5dB, the success probability for M = 2 is largest
while for M = 8 is smallest, which shows a loss of diversity
gain in M = 8 case. This is because, the SNR margin is too
low to overcome the path loss that exists between the nodes
of the transmitting and receiving windows in M = 8 case.
However, for Υ ≥ 13dB, the success probability for M = 8
is maximum, which shows that full diversity gain is achieved
at this Υ. This result shows that in order to achieve the
advantages of diversity gain, one must provide the appropriate
SNR margin.
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Fig. 5. Contour of normalized distance as a function of η and σ; Υ = 15
db and M = 3.

For the deployment point of view, it is desired to optimize
certain parameters like transmit power of the nodes or the
distance between them to achieve certain quality of service
(QoS), η. The QoS is defined as the probability that a message
is delivered to a certain distance without being entered into
an absorbing state. The ideal value of QoS is 1. We can use
(5) to find an upper bound on the number of hops, n0, one
can go with a given η, i.e., ρn0 ≥ η, which gives

n0 ≤ ln η

ln ρ
, (21)

while by multiplying the number of hops n0 by M gives the
maximum distance than can be reached with a certain QoS η.
Fig. 5. shows the contours of the network coverage in term of
normalized distance as a function of η and σ at a specific SNR
margin of Υ = 15 dB and M = 3. The normalization is done
for a better representation of the figure. It can be noticed that
a particular distance can be reached by different combination
of η and σ. The increase in η or σ drops the coverage of the
network. At σ = 6 dB the normalized distance of 0.1 can
be reached with η ≈ 0.90, however if σ is increased to 11
dB, then the same normalized distance can only be reached
by η ≈ 0.45 as shown in Fig. 5. This loss of QoS shows the
effect of increasing the severity of shadowing on the network.

Given a value of the SNR margin and the environments
statistics in term of σ, an important question to be asked is,
“what level of cooperation is optimal to have the maximum
coverage of the network and/or to have reliable hops?” In other
words we are interested in finding the optimal value of M that
yields maximum coverage for given channel conditions. Fig.
6. shows the contours of the optimal M , for η = 0.75, under
various SNR margins and standard deviation of the shadowing.
This result is obtained by first calculating the number of hops
n0 using (21) and then multiplying the number of hops n0

by M to find the coverage. It can be noticed that when both
σ and Υ are small, then a lower M will provide maximum
coverage and vice versa. It can be seen that at σ = 7 dB and
Υ = 8 dB , the maximum coverage is obtained by selecting
M = 5, however if σ is unchanged and the Υ is increased to
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10 dB, then the maximum coverage is obtained by M = 6.
The results of Fig. 6. specifies the maximum coverage of

the network, however, the individual hops may not be very
reliable. For instance, the η is just 75% for one-hop in Fig.
6. However, if reliable hops are required, then the level of
cooperation may change for the same channel conditions. Fig.
7. shows the contours of the optimal M , which provide the
maximum probability of one-hop success at different Υ and
σ. It can be noticed from Fig. 7. that when Υ = 9 dB and
σ = 7 dB then M = 4 give us the maximum ρ = 0.9280,
however at the same parameters set, M = 5 provides the
maximum coverage from Fig. 6. Similarly, for the same Υ, if σ
is changed to 9 dB then M = 7 will provide us the maximum
probability of one-hop success, which is ρ = 0.9722. The
results of Fig. 7. can be used in a broadcast scenario when
more reliable hops are required at each broadcast phase, and
it is required that each node must decode the message.

Fig. 8. shows the coverage of the network for three dif-
ferent channel model, i.e., fading, shadowing and composite
shadowing-fading. The coverage is shown in term of normal-
ized distance at M = 3, Υ = 15 dB, and η = 0.90. Three
coverage behaviors are shown for shadowing and composite
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Fig. 9. Co-lcated vs. equi-distant network topology.

channel models at three different σ’s. Since, fading is indepen-
dent of σ, the result of fading channel is repeated with different
results of shadowing and composite channel. The coverage
of fading channel model has been obtained from [6]. It can
be noticed that fading channel has the worst coverage when
compared to shadowing and composite channels at σ = 3
dB. Shadow only channel model provides the best coverage
because of small σ = 3, introducing a macro-diversity effect.
At σ = 6 dB, both the coverage of fading and shadowing
are comparable while composite channel gives the worst
performance. The coverage at σ = 9 dB is worst for composite
shadowing-fading while fading only channel provides the best
performance. It can be seen that increasing the β from 2 to 2.5
does not change the trend of the coverage for the three channel
models, however, the coverage of each channel model drops by
increasing the path loss exponent. It can be inferred from the
figure that within normal range of σ, i.e., 6-12 dB composite
channel provides the lowest coverage as compared to fading
and the shadowing channel model. Hence it is recommended
to consider both the small-scale fading as well as shadowing
while quantifying the performance of wireless networks.

A. Equi-Distant versus Co-located Network Topology

Fig. 9. shows the equi-distant and co-located network
topologies for the line networks. In the co-located case, the
nodes are placed close to each other 1 but the node density
remains the same as that of the equi-distant topology. The hop
distance of both the networks also remains equal.

1with at least half wavelength spacing for independent fading assumption
to be valid
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Let ρD and ρd denote the probability of one-hop success for
co-located and equi-distant network topologies, respectively.
Fig. 10. shows the difference in the success probabilities of
both the network topologies versus SNR margin at σ = 6
dB for various M . It can be noticed from the figure that at
low Υ, the difference (ρD − ρd) is negative, which shows
that the equi-distant topology works better. This is because
at low SNR margin, only the nodes at the trailing edge of
the transmitting window in equi-distant topology will actively
contribute to the success probability of the next level nodes
because the path loss between them is small. At this small
SNR margin, the path loss between the co-located clusters is
large enough that prohibits a large value of one-hop success
probability and hence the equi-distant topology works better.
The difference become positive at the median range of Υ,
which indicates that the co-located topology performs better
in this region. As the SNR margin is increased (for instance at
10dB), the path loss effects for the co-located clusters become
smaller that guarantees a large value of success probability.
At this stage, all M nodes in the cluster contribute to the
success probability. However, the starting nodes of equi-distant
topology still suffers from high path loss. At higher SNR
margin, the performance of both the topologies become equal,
which shows that a higher Υ has overcome all the losses. Fig.
11. shows the same results as described earlier for absolute
values of the one-hop probability of success for both the
topologies.

Fig. 12. shows the difference in the success probabilities
of two topologies versus SNR margin at various values of σ
while keeping M = 4 fixed. It can be seen that the equi-
distant topology has better performance for almost the entire
SNR range when the shadowing is severe. This is because
the shadowing phenomenon models the fluctuations in the
received power around a certain mean; the mean defines the
path loss exponent. These fluctuations become large when
σ of shadowing is increased. Therefore, in the equi-distant
topology, even at smaller to moderate values of SNR margin
when the path loss between nodes at the starting edge of
transmitting window is higher, one can still get a favorable
shadowing outcome, which eventually increases the one-hop
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success probability as compared to the co-located case. Hence
the power fluctuations at disparate path distances in equi-
distant topology contribute to larger values of success prob-
ability as compared to the co-located topology with identical
path losses between all the nodes. This result is contrary to
[23], where it was shown that the co-located case always
perform better if the channel exhibits small-scale fading only.
As the σ is an environment dependent variable and Υ is a
design parameter, hence a suggestion can be made to use a
specific topology according to a specific channel model for
better system performance.

VI. CONCLUSION

A stochastic model for a cooperative multi-hop line network
is presented. The transmission from one level to another is
modeled as a quasi-stationary Markov process. The transition
probability matrix of the Markov chain is derived by consid-
ering the wireless channel as a composite shadowing-fading
channel. Shadowing is modeled as a log-normal RV while
multipath fading is modeled as a Rayleigh RV. A multiplicative
model is used to find the mixture distribution, which becomes
a Suzuki distribution. The sum of the multiple Suzuki RVs
is approximated by an MGF-based technique, which uses the
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Gauss-Hermite integration to find the closed-form expression
for the MGF of Suzuki and log-normal RVs. The SNR margin
required to achieve a certain quality of service under various
system parameters has been quantified. The optimal number
of nodes in a level to give maximum coverage for a given SNR
margin and shadowing standard deviation has been quantified
for a given QoS. The choice of whether to use equi-distant
or co-located topology under various system parameters has
been presented. A possible future work is to expand the
current model to a two dimensional grid and incorporate the
interference in the model if multiple flows are considered.
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