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Abstract—Traffic offloading via small cells is important to re-
alize the benefits of multi-tier heterogeneous networks (HetNets).
Currently, the user association techniques are under the influence
of single slope path loss model. The densification of networks and
irregular cell patterns have increased the variations in both the
link distances and interferences; making single slope path loss
models less accurate. In this paper, we consider the downlink of
a HetNet with picocells overlaid on a macrocell and propose a
framework for user association with dual slope path loss model.
Simulation results show that the dual slope model improves
the system performance compared to the standard single slope
model by offloading more traffic from macro-tier to pico-tier;
the effect being more significant at higher edge user density.
Furthermore, the user association is highly dependent on the
path loss exponents in a dual slope model.

Index Terms—Heterogeneous network, dual slope path loss
model, user association, load balancing.

I. INTRODUCTION

Heterogeneous networks (HetNets) have emerged as an
effective solution to overcome the challenges triggered due to
drastic growth of wireless data traffic. They ensure significant
enhancement in the overall network performance that include
high data rates and expanded cell coverage [1]–[3]. Neverthe-
less, these perks are accompanied by new technical challenges
namely hardware expenses, interference management, user as-
sociation, load balancing, radio resource management, energy
efficiency along with the others [4].

Recently, numerous studies have focused on the mixed
deployment using macrocell and distributed small cells, which
have shown significant results to get higher throughput gains
in dense networks. To manage the high user density and to
increase the capacity, it is desirable to shift the traffic load from
macrocell to small cells. HetNets, consisting of small cells
with smaller coverage range, allow small cell base stations
(BSs) to communicate at lower powers which limits the
fraction of users connected to them, resulting in congestion at
the macro-tier. Different load balancing techniques are studied
to offload the traffic from macro-tier [5], [6]. One promising
way to resolve this issue is through static cell biasing that
allows users to offload to small cells using a biased measured

signal. This suboptimum offloading technique is known as cell
range expansion. However, the traffic demand in hot spots
in the dense networks often varies with time, which calls
to dynamically adjust the biases, resulting in enhanced load
balancing gains [7], [8].

Most of the existing literature uses single slope path loss
model to represent the path loss over the entire coverage range.
While this model is easy to study and analyze, it does not
capture the dependence of path loss exponent on the link
distance perfectly. However, in the most recent works, this
trend is shifted more towards dual slope path loss model.
This migration is influenced by the network densification and
recent work on millimeter wave (mmWave) communications
because of highly intermittent links [9]. Multi-slope models
apply different slopes for different link distances, which result
in improved performance for dense networks [10]. In [11],
dual slope path loss models are used to study the coverage
probability with varying user density. The authors in [12]
extended this work to user association in HetNets using dual
slope path loss model.

In this paper, we extend the dual slope analysis on the
downlink of a HetNet with picocells overlaid on a macrocell.
The user association is done to offload the traffic to pico-
tier using dual slope path loss model. We have considered
different slopes before and beyond the critical distance, which
can be used to approximate the two regimes of line of sight
(LOS) and non line of sight (NLOS) links. This distance is
environment dependent, which increases with less blocking
environment, but can be approximated by taking the average
LOS link distance. The performance enhancement with dual
slope model is significant in achieving better offloading com-
pared to single slope model in HetNets. The user association
and load balancing is analyzed and we show that the biasing
with dual slope path loss model outperforms the conventional
biasing schemes. The dual slope path loss model offloads the
users to the nearby small cells, thus offloading the traffic from
macro-tier.

The rest of this paper is organized as follows. In Section
II, we present the system model of the proposed framework
along with path loss models. Section III shows the simulation978-1-5090-5541-8/17/$31.00 © 2017 IEEE



results to demonstrate the performance of proposed scheme
under single and dual slope path loss models and Section IV
concludes the paper.

II. SYSTEM MODEL

Consider the downlink of a two-tier HetNet composed of
M − 1 picocell base station (PBSs) overlaid on a macrocell.
A snapshot of a two-tier HetNet is shown in Fig. 1 where
both tiers use dual-slope path loss model. The path loss
models are explained in detail in Section II-A. The macrocell
base station (MBS) is represented by mo whereas the set
of all the base stations (BSs) in the system is given as
M = {mo,m1, ...,mM−1}. Let N = NM ∪ No be the set
of all users deployed randomly over the entire area. The set
of macrocell user equipments (MUEs) is denoted by No and
the set of picocell users equipments (PUEs) is represented by

NM =
M−1⋃
m=1

Nm where Nm is the set of PUEs served by the

mth PBS.

A. Path Loss Models

In this section, we present different path loss models to
model the large scale fading in the network. The single slope
path loss model is given as

L(d)[dB] = 20 log10(
4π

λc
) + 10α log10(d) + ξ, (1)

where λc corresponds to the carrier wavelength, α is the path
loss exponent and ξ is a Gaussian random variable (RV) with
zero mean and σ2 variance.

The single slope path loss model is the standard model,
which falls short in accurately capturing the path loss exponent
dependence on the physical environment in dense and mil-
limeter wave capable networks. These limitations lead to the
consideration of dual-slope path loss model in future networks.

The dual-slope path loss model is given as

L(d)[dB] =


β + 10α1 log10(d) + ξ d ≤ rc
β + 10α1 log10(rc)
+10α2 log(

d
rc
) + ξ d > rc

, (2)

Macro BS

Critical radius (Macrocell)

Critical radius (Pico cell)

Pico BS

Figure 1. A two-tier heterogeneous network with red circles showing the
critical radius of picocell and macrocell.

Table I
PARAMETER NOTATION.

Parameter Symbols
Set of Tiers I
Set of BSs M

Set of Users N
Transmit Power pn,m
Channel Gain hn,m

Channel-to-interference-plus-noise Ratio γn,m
ith tier Biasing Factor θi

Critical Radius rc
Path Loss Exponent (Single-Slope

Model)
α

Path Loss Exponents (Dual-Slope
Model)

[α1, α2]

Floating intercept (Dual Slope) β

mth BS Power Budget Pmax
m

Noise Power N0

where d is the distance in meters and rc is the critical distance.
β represents the floating intercept, α1 and α2 are the slopes
for below and beyond critical radius, rc.

This dual slope model can be generalized into N-slope
model as

L(d)[dB] =



l1(d) = β + 10α1 log10(d) + ξ 0 < d ≤ r(1)c
l2(r

(1)
c , d) = l1(r

(1)
c )+

10α2 log(
d

r
(1)
c

) r
(1)
c < d ≤ r(2)c

l3(r
(1)
c , r

(2)
c , d) = l2(r

(1)
c , r

(2)
c )

+10α3 log(
d

r
(2)
c

) r
(2)
c < d ≤ r(3)c

. .

. .

. .

lN (r
(1)
c , r

(2)
c , .., r

(N−1)
c , d) =

lN−1(r
(1)
c , r

(2)
c , .., r

(N−1)
c )+

10αN log( d

r
(N−1)
c

) d > r
(N−1)
c

,

(3)
where αn, n = {1, .., N}, is the path loss exponent such that
0 ≤ α1 ≤ α2 ≤ ... ≤ αN . The critical distance is denoted as
rc

(n), n = {1, .., N−1}, such that rc(1) ≤ rc(2) ≤ ... ≤ rc(N).

B. User Association

This paper considers different approaches for user associa-
tion. We assume open access, which allows users to connect
to any tier. We analyze the cell association based on minimum
path loss, maximum biased received power and maximum
biased rate.

1) Minimum Path Loss: We first consider the association on
the basis of path loss, where users are associated with the BS
which gives the lowest path loss. The nth user is associated
with the mth BS that maximizes

arg max
m

1

L(dn,m)
, (4)



where dn,m is the distance between the nth user and the mth

BS.
2) Maximum Biased Received Power: The association is

determined on the basis of received power, where users are
associated with the BS that serves the maximum biased
received power. The nth user is associated with the mth BS
that maximizes

arg max
m

θiP
max
m

L(dn,m)
, (5)

where Pmax
m is the maximum transmit power of the mth BS

and θi is the bias factor for the ith tier and all the BSs in the
particular tier use the identical bias value. This case can be
reduced to maximum received power association by putting
θi = 1. This paper assumes the bias value for macro-tier,
θ1 = 0 dB and it varies between 0 dB to 30 dB for pico-tier,
in case of biased received power association.

3) Maximum Biased Rate: The user association is decided
on the basis of achievable rate. The nth user is associated with
the mth BS that gives the maximum biased rate, i.e,

arg max
m

θiRn,m, (6)

where θi is the bias factor for the ith tier. This paper assumes
the bias value for macro-tier, θ1 = 1, in case of biased rate
association. The achievable rate, Rn,m, in (b/s/Hz) can be
formally defined as

Rn,m = log2(1 + pn,mγn,m), (7)

where pn,m is the transmit power from the mth BS to the nth

user. γn,m is the channel-to-noise ratio between the mth BS
and the nth user.

The channel-to-noise ratio is defined as

γn,m =
|hn,m|2

N0
, (8)

where N0 represents the noise power and hn,m corresponds
to the channel gain. In this paper, we assume that each user
is associated with one BS at a time.

III. SIMULATION RESULTS

We consider a two-tier HetNet with a single macrocell of
radius 500 m where picocells are uniformly overlaid on the
edge of it. The maximum transmit power of MBS and PBS,
Pmax
m , is set to 46 dBm and 30 dBm, respectively. The power

spectral density of noise is −174 dBm/Hz. The parameters
used for path loss models are listed in Table II [13], unless
stated otherwise.

For user deployment, two different schemes are considered.
In the first scheme, users are uniformly scattered over the
entire area whereas, in the second scheme, high user density
exists outside the critical radius of the macrocell.

Fig. 2 and Fig. 3 show the fraction of users associated with
pico-tier for maximum biased received power association and
uniform user deployment. The values of path loss exponents
used in these figures represent harsh and moderate environ-
ment conditions, respectively.

Table II
SIMULATION PARAMETERS.

Parameter Value Parameter Value
β 42.1 dB σξ 6.9 dB
α 3 fc 2.4 GHz

rm(macrocell) 350 m rm(picocell) 50 m
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Figure 2. Fraction of users connected to pico-tier when biased received power
association is used across varying biasing factor of pico-tier, θ2, for N = 100,
M = 4, θ1 = 0 dB, [α1, α2](Macro-tier) = [4, 5] and [α1, α2](Pico-tier) =
[3, 4].

In Fig. 2, biasing effect is investigated by varying the
bias factor of the pico-tier with no biasing of the macro-
tier for harsh environment conditions. An increasing trend in
user offloading can be observed with the increasing pico-tier
bias factor as biasing improves the received signal strength
originating from PBSs. The figure reveals that biasing with
both single and dual slope models is beneficial for offloading.
However, with dual-slope model, this effect is stronger as dual
slope model better approximates the links. This figure also
compares the offloading performance of the network while
exploiting single-slope and dual-slope path loss models. The
figure shows that the offloading is maximum with dual slope
model in the macrocell, as higher path loss exponents of
the macro-tier directs the users to the nearby BSs due to
highly attenuated long distance links between users and MBS.
As the user leaves the critical radius of the macrocell, the
NLoS path loss exponent increases, which further decreases
the signal strength and users are offloaded to pico-tier. In
harsh environment conditions, applying dual slope model in
the macrocell offloads the traffic to pico-tier and if dual slope
model is applied on picocells too, it prevents the offloading up
to some extent as NLoS exponent of pico-tier is greater than
the PLE used for single slope model.

Fig. 3 shows the fraction of users associated with pico-
tier for moderate environment conditions and rest of the
assumptions are same as used in Fig. 2. This figure reveals
that the performance of the scheme with dual slope model in
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Figure 3. Fraction of users connected to pico-tier when biased received power
association is used across varying biasing factor of pico-tier, θ2, for N = 100,
M = 4, θ1 = 0 dB, [α1, α2](Macro-tier) = [3, 4] and [α1, α2](Pico-tier) =
[2, 4].
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Figure 4. Fraction of users connected to pico-tier when biased received power
association is used across varying biasing factor of pico-tier, θ2, for N = 100,
M = 4, θ1 = 0 dB, [α1, α2](Macro-tier) = [3, 4] and [α1, α2](Pico-tier) =
[2, 4].

both tiers is better than the scheme where dual slope model is
applied on macro-tier only, unlike the previous case. This is
because of the fact that in moderate environment conditions,
lower path loss exponent within the critical radius induces
less attenuation. The offloading to pico-tier is comparatively
less when dual slope model is used in macro-tier only as
some users residing within the critical radius of the macrocell
might prefer MBS over PBSs because smaller PLE is used
within the critical radius of the macrocell, resulting in reduced
attenuation. The offloading improves when dual slope model
is applied on pico-tier too, as more users are pushed toward
nearby PBSs with less attenuated coverage region.

Fig. 4 shows the fraction of users associated with pico-tier
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Figure 5. Fraction of users connected to pico-tier when path loss association
is used across varying density of PBSs for N = 100, θ1 = θ2 = 0 dB,
[α1, α2](Macro-tier) = [4, 5] and [α1, α2](Pico-tier) = [3, 4].

across varying biasing factor of pico-tier. Maximum received
power association and high edge user density is considered
with moderate environment conditions. The figure shows that
the offloading is relatively high in this case as compared to
the previous case where uniform user deployment is used as
shown in fig. 3. This is due to the fact that the picocells are
deployed on the edge of the macrocell where the density of
users is high for this case and thus, the offloading improves.
This figure further reveals that the dual slope model needs
less biasing to achieve a particular offloading as compared to
single slope model.

In Fig. 5, the path loss association is considered to show
the impact of BS density on the user offloading to pico-tier.
The figure shows that as the density of PBSs increases, the
distances of the users from the PBSs decreases, which in turn
decreases the path losses and the load is shifted to the less
congested PBSs. The trend is sharp in the start as the edge
users start connecting to the pico-tier, which is more rapid
in case of dual slope model. This offloading almost becomes
invariant with further increase in the PBSs density in case of
dual slope model.

Fig. 6 shows the user association in case of rate maximiza-
tion for high edge user density. Similar trend as in Fig. 2 can
be seen here. The fraction of the users associated to pico-tier
increases with the dual slope model but the improvement in
offloading, is comparatively less when compared to other two
association schemes. This is because of the fact that the dual
slope model is more beneficial for median users as compared
to the edge users in terms of high data rates. Thus, less number
of users offload to pico-tier in order to maximize their rate,
however, the offloading is better as compared to the single
slope model. This figure also reveals that the increase in the
bias factor for pico-tier improves the offloading, as users get
better biased rate from the pico-tier.

In fig. 7, we demonstrate the impact of critical radius of the
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Figure 6. Fraction of users connected to pico-tier when association is done
based on biased maximum rate across varying pico-tier bias factor, θ2, for
N = 50, M = 4, θ1 = 0 dB, [α1, α2](Macro-tier) = [4, 5] and
[α1, α2](Pico-tier) = [3, 4].
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Figure 7. Fraction of users connected to pico-tier when biased received power
association is used across varying critical radius of picocell for N = 100,
M = 4, θ1 = θ2 = 0 dB

picocell on the performance of the network for high edge user
deployment. As the critical radius of the picocell increases,
more users start entering within rc, the attenuation decreases
due to smaller PLE and the users residing within rc prefer
PBSs due to less attenuated links. However, the increasing
trend is sharp in the beginning and then it starts slowing down
with further increase in rc. This is because of the fact that
as rc increases, the user offloading to pico-tier increases but
the distance between the PBSs and the users also increases
and the approximation of LoS links within the critical radius
of picocells start affecting. The figure further reveals the
impact of path loss exponents of the dual slope model on
user offloading. It can be seen from the figure that the case
with larger path loss exponents shows better offloading as they

induce higher attenuation in the cell and users prefer nearby
BSs. The user offloading in case of single slope model is
minimum as it does not accurately characterize the network,
which cause performance degradation.

IV. CONCLUSION

In this paper, we analyzed the impacts of dual slope path
loss model on the performance of a downlink multi-tier HetNet
where different path loss exponents are used for different
ranges. The user association is done to offload the traffic from
macro-tier to pico-tier under single and dual slope path loss
models. Simulation results showed that the dual slope model
shows significant improvement in terms of load balancing in
comparison to single slope model, which does not measure the
path loss exponent dependence on the link distance accurately.
With the dual slope model, more users offload to pico-tier
with lower biasing as compared to single slope model. We
also proved that the user association is highly dependent on
the path loss exponents of the dual slope model. The above
results strengthen the position of multi slope path loss model
as a potential substitute for standard path loss model in the
ever denser future networks.
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