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Abstract—This paper proposes a method of recognizing and
classifying the basic activities such as forward and backward
motions by applying a deep learning framework on passive
radio frequency (RF) signals. The echoes from the moving body
possess unique pattern which can be used to recognize and
classify the activity. A passive RF sensing test-bed is set up
with two channels where the first one is the reference channel
providing the un-altered echoes of the transmitter signals and
the other one is the surveillance channel providing the echoes
of the transmitter signals reflecting from the moving body in
the area of interest. The echoes of the transmitter signals are
eliminated from the surveillance signals by performing adaptive
filtering. The resultant time series signal is classified into different
motions as predicted by proposed novel method of convolutional
neural network (CNN). Extensive amount of training data has
been collected to train the model, which serves as a reference
benchmark for the later studies in this field.

Index Terms—Adaptive filtering, convolutional neural network,
deep learning, passive RF sensing, motion classification

I. INTRODUCTION

Most of the infrastructure these days possesses Wi-Fi systems
that are used to connect users with the internet. However,
apart from regular internet connectivity, such networks can
be used to develop smart systems such as passive RF sensing
where we can monitor the premises of a building using its
motion detection feature. Such systems may provide freedom
to have smart gesture communication to control different
devices. Moreover, as the passive RF sensing has no dedicated
transmitters, they are power efficient and stealth in nature.
Such passive sensing systems can be used on different RF
signals, e.g., global system for mobile communication (GSM),
frequency modulation (FM) and satellite signals, etc. for
various applications in outdoor scenarios.

Passive radars are different than the active radars in the
sense that they don’t require dedicated transmitters. They use
non-cooperative sources of illumination such as the commer-
cial signals to detect the presence of any object as shown
in Fig. 1 [1] [2]. WiFi signals, for instance, can be used
in a variety of indoor localization and tracking activities.
[3] addresses an indoor geometry consisting of various WiFi
access points and selects an optimal pair of WiFi transmitters
for motion detection such that the detection uncertainty is
least when compared to a Cramer-Rao bound. Similarly, [4]
used received signal strength and channel state information to
perform indoor localization. Many other works use 3G signals
to perform outdoor target tracking such as [5] and [6].
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Fig. 1: Bi-static passive RF sensing model

A variety of research has been done in passive sensing
with applications ranging from miniscule motion such as
human respiration to very high-speed scenarios such as air-
plane motion. [7] presented a WiFi-based system for medical
applications that include fall detection of a human body
and tremor detection. [8] proposed and implemented a deep
learning framework using passive WiFi sensing to classify and
estimate human respiration activity. In [9], an effective signal
processing scheme was presented to track moving vehicles
and to obtain their cross-range profiles with a passive bistatic
radar (PBR) based on the signals of opportunity emitted by
a WiFi router. The work focused on targets moving with
low radial velocity component which might have reasonable
cross-range velocity component enabling to develop a high-
resolution cross-range profile using inverse synthetic aperture
radar (ISAR) techniques. [10] presented the effects of channel
multipath on detection probability using a WiFi illuminator.
[11] showed that a WiFi can be used to see moving objects
through walls and behind closed doors. It used multiple-input
and multiple-output (MIMO) interference nulling to eliminate
reflections off static objects and track a human by treating the
human body as an antenna array and tracking the resulting RF
beam.

Passive sensing has also been utilized in product-based
research such as [12]. The authors proposed and implemented
a WiFi-based position and orientation agnostic gesture recog-
nition system named WiAG. It required samples of gestures
for training in only one configuration and the model generated
the samples for other configurations itself accurately. [13]
proposed and implemented a channel state information (CSI)-
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Fig. 2: Block diagram of the proposed RF passive sensing system

based human activity recognition and monitoring (CARM)
system which is based on two theoretical models. It first
proposed a CSI-speed model that quantifies the relation be-
tween CSI dynamics and human movement speeds. Then the
CSI-activity model is proposed which quantifies the relation
between human movement speeds and human activities. Sim-
ilarly, [14] presented a system for activity recognition from
passive radio-frequency identification (RFID) data using a
deep convolutional neural network.

Deep learning network which comprises of cascaded non-
linear processing layers has been an area of active research
over the past few years with a large spectrum of applications.
Convolutional neural network (CNN) is one of the deep learn-
ing models which uses the spatial information of training data
to learn and extract the features [15]. Deep learning has been
used recently in passive sensing systems such as [8]. However,
most studies either focus on detection or classification of an
activity or activities. In this paper, we propose and develop a
prototype which uses passive RF sensing to detect and classify
the type of motion happening in the area of interest (AOI). We
use the CNN model and train it beforehand and then apply that
to predict the motions in real-time. Promising results have been
achieved with the offline data, i.e., data taken in a controlled
environment just like the training data, whereas the accuracy
slightly drops in case of online data due to factors explained
later in the paper.

The rest of the paper is organized as follows. System model
will be described in Section II, whereas the procedure of
implementations will be explained in Section III. The results
and findings as given in Section IV whereas we will conclude
our paper in Section V.

II. SYSTEM MODEL

This section presents working model of the proposed system.

A. Passive Sensing Test Bed

As shown in Fig. 2, the system consists of a reference
antenna which receives the unaltered signals of the illuminator
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Fig. 3: LMS algorithm applied on the received signal

of opportunity whereas the surveillance antenna receives the
reflected signals which are altered due to the motion or
movements in the environment. Mathematically, the received
signal can be represented as

s[n] =
M∑

m=0

Amx[n+ τm]ei2πfmn, (1)

where x[n] is the transmitted signal, A is the signal amplitude,
τ is the path delay from the signal source to the surveillance
antenna, and f0, f1, f2, ..., fM are the doppler shifts in surveil-
lance signal. For simplicity, we consider single reflection from
the moving body, therefore, (1) can be written as

s[n] = Amx[n+ τm]ei2πfmn. (2)

As x[n] is unpredictable and constantly changing, therefore,
we require s[n] to be insensitive of x[n]. For this purpose, we
use the filtering technique explained next, which provides the
only information we require, i.e., the Doppler spread and the
received signal strength indicator (RSSI).

B. Adaptive Filtering
As mentioned above, the aim is to remove direct echoes of

x[n] from the surveillance signal s[n]. The reference signal



Input Convolution + Pooling Layer Fully Connected Layer

n-Binary Classification

Forward

Backward

Static

Fig. 4: CNN-based classification model for the proposed system

r[n] can be represented as

r[n] =
M∑

m=0

Amx[n+ τm]. (3)

Least mean square (LMS) adaptive filtering technique is used
to remove the r[n] component from the surveillance channel
s[n]. The filtered output y[n] depicted in Fig. 3 is calculated
as

y[n] = r[n].ωT [n], (4)

while ωT [n] is the transpose of the filter coefficients vector
and [.] denotes the dot product operator. The error signal e[n]
is the difference of s[n] and y[n]. At each iteration, the filter
coefficients are updated as

ω∗[n] = ω[n] + (µr[n]e[n]), (5)

where ω∗ is the updated vector of filter coefficients and µ is
the step size parameter which controls the rate of convergence
of LMS filter. Through this process, r[n] adjusts the weights
of the filter such that y[n] starts to approach s[n]. The error
signal e[n] is the output of the adaptive filter which contains
the required movement features.

C. Classification Model
The classification model is based on CNN. The input to the

model is one-dimensional time series signal fragmented into
fixed size obtained after the filtering process. As shown in Fig.
4, data passes from input layer to convolution layers and then
to fully connected layers for final classification. In convolution
layers, the features obtained from previous layer are convolved
by a series of convolution filters determined by the depth, D,
of the convolution layer, which acts as a matched filter [8]
and then, a bias value is added. To enhance the classification
ability of the model, more than one convolution layers is used.
Hence, the linear unit activation function (ReLu) is applied to
the output of the layer to form output feature which maps on
next layer [16]. For the down-sampling of information between
the convolutional layers, the popular scheme of pooling layer,
i.e., max-pooling layer is applied [17]. After the features pass
from convolutional layers to fully connected layers (FCL), the
FCL transform the mapped feature into the output vector using
Softmax function [16].
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Fig. 5: 1×1m2 passive sensing test-bed showing USRP radios

III. IMPLEMENTATION

The system implementation includes hardware and software
interfacing, training data collection, CNN model design and
construction of the prototype used for real-time classification
of motion.

A. Hardware
In a 1×1m2 passive sensing test-bed, the universal software

radio peripheral (USRP) B200 (software defined radio) is used
for transmitting synthetic sinusoid of 1 kHz centered at 3 GHz
using omni directional antenna. The transmit power of the
USRP is kept at 60-70 dBm. Similarly, two USRP B200s, each
with log periodic directional antenna, are deployed as shown
in Fig. 5, which act as surveillance channel and reference
channel, respectively. These antennas have 6 dBi gain and 600

beam-width. The on-board Spartan 6 FPGA in USRP B200
digitizes the received information form the receiving channels
with pre-decided sampling rate of 64000 samples/sec.

A custom programmable car, which can perform basic
motion in precise manner, is manufactured for emulating the
required motion profiles and provides the training data. The car
can perform the forward and backward motion with constant
average velocity which are the two main categories and are
explained further in the subsection of dataset.

B. Software
The GNU Radio application is utilized to configure all

the USRP B200s and then the Python script is written to
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Fig. 6: (a) Received signals at surveillance channel for all three categories. (b) Ready to be used for training after filtering
process.

perform the successive operations of adaptive filtering and
down-sampling. The time series signal is resampled at 1000
samples/sec, and then the signal stream is sliced into 500 mil-
lisecond pieces using sliding window technique implemented
in the same Python script. This output, as shown in Fig. 6(b),
can now be used as training data or test data for the model.

The CNN model training is accomplished on the Keras
running on the top of TensorFlow which is open-source neural
network library written in Python and provides modular ap-
proach to design the CNN architecture [18]. After the training
of model, test data is used for the verification. The verification
results are discussed in subsection of results and discussion.
The 80% of the gathered data is used for training whereas
20% is subjected as test data for verification of classifier.

C. Data Set

In this paper, we focus on the indoor motions, i.e., hand
gestures, walking, nodding, etc. Therefore, the car is pro-
grammed to emulate the motion at the walking speed of a
human which is found to be 1.4 m/s. The training data was
gathered to train and test the CNN model for classification of
the basic movements, i.e., forward, backward and static. For
this purpose, we collected a 10 minutes sample data for each
category in different surroundings to avoid the overfitting of
the model to the specific environment. These includes noisy
backgrounds and the variations in the altitudes and locations
of the transmitter and receivers. The sample data is then
segmented into short pieces of 500 milliseconds. Hence, 1200
sample files of each category are generated which are used as
the training data and verification of the model.

D. CNN Model

The proposed model is developed in Keras which runs on
the top of TensorFlow. The model has a total of eight layers
out of which four are convolutional layers and four are fully
connected layers. At the end of each layer, dropout is used

Fig. 7: CNN model verification results

to avoid the model from specializing on a single set of rules.
Also, pooling layer with filter size 1× 2 is used to gradually
reduce the amount of parameter in model to ease on the
computational resources and avoid overfitting [17].

IV. RESULTS AND DISCUSSION

This section provides the performance of the proposed
system. Fig. 6(a) shows the raw data waveforms attained from
the antennas in three different scenarios, whereas, Fig. 6(b)
shows the waveforms after they have been passed through the
adaptive filtering process to get the waveforms with only the
required information. After the training of CNN model with
80% of the total data obtained from training, remaining 20%
data was given to the model as the input for the offline testing
process. Fig. 7 shows the confusion matrix for the testing
which depicts that offline testing provides 99% accuracy which
proves the model’s reliability for classification of motions.

After this, we conducted the experiments at different dis-
tances from the surveillance receiver. Results obtained from
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Fig. 8: Accuracy of model for different distances between
motion and passive sensing system.

these experiments, providing the accuracy of model for three
different distances, are shown in Fig. 8. At the distance of
around 1.5m, the model shows 89% accuracy and going further
away, to the range of 2m, decreases this accuracy to 74%.
Hence, the model accuracy drastically decreased as location
of movements is moved away from the passive sensing system.
This is due to the decrease in the RSSI which makes it
impossible for the model to predict correctly.

For the real-time testing of our model, the setup receives
signals for two seconds and predicts the motion profile in the
real-time. After excessive evaluation, accuracy of the model in
real-time is around 70%. Truncated part from this evaluation
process, as shown in Fig. 9, depicts that the model fails to
correctly predict the transitions (deceleration) of the motions
which results in the drop of accuracy of the model. The
signals received at the transitions are closely resembled to the
motion profile of opposite movement which causes the model
to predict the forward motion as backward motion and vice
versa at transitions. In order to mitigate this issue, the previous
predictions from the model should be considered along with
the current prediction to evaluate the motion profile.

V. CONCLUSION

In this paper, we have analyzed the effectiveness of CNN
model in the classification of basic motions in a passive
sensing system. The results prove that this approach is reliable
and accurate. Few challenges such as prediction of transition
motion open up new research for optimizing the model. The
accuracy decreases drastically as the distance increases be-
tween movement and the sensing system because of low RSSI.
Hence, better and high power opportunistic transmitters can
provide high accuracy at larger distances such as apartments
or rooms. It is concluded that CNN network can replace the
classical systems for movement tracking in passive sensing
domain as it is fast and predicts the movements accurately.
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