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Abstract

Space time block coding (STBCs) improves the reliability of transmission

by sending multiple copies of data through multiple antennas. Recently, the

study of orthogonal designs in higher dimensions has supported higher di-

versity gains, i.e. combining STBCs with different forms of diversity. Also,

designing codes with higher code rates is a desired aim for future commu-

nication networks but the complexity of the receiver has always limited this

freedom. Quaternion orthogonal designs (QODs) have been derived mostly

from complex orthogonal codes (CODs). This supports the idea and benefits

of using QODs to achieve higher code rates but it remained limited in fully

exploiting the use of dual-polarized antennas. The real essence of adding the

polarization diversity to the coding designs still remains unexplored. This

research targets this research gap and presents a thorough analysis of using

higher dimensional variables not only to achieve efficient code designs with

higher code rates but also to investigate mechanisms to optimize the receiver

design. Based on these aims, this research takes two major paths. First,

it studies the impact of using quaternion designs with dual-polarized anten-

nas. The underlying channel between the dual-polarized transmit and receive

antennas is discussed when the pure QODs are transmitted. These QODs

provide promising diversity gains and shows comparative code rates similar

to the state-of-the-art Alamouti codes. Secondly, this research work presents
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linear and decoupled decoders for pure QODs, that was not possible before.

As an application of the proposals in this work, quaternionic channel-based

modulation has been discussed that fully exploits the polarization diversity

without considerable limitations on the transmit and receiver dimensions.

The design of wireless communication systems using pure QODs transmit-

ted using dual-polarized antennas will open new horizons of research. It will

support higher data rates and improved receiver efficiency, that are the two

main targets of the future generations of wireless systems.
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Chapter 1

Introduction

Wireless communication systems have evolved from wired and guided com-

munication to non wired and unguided communication beyond the geograph-

ical limitations of countries and continents. All this has been possible due

to continuous efforts from different fields of science including communica-

tions, electronics and antenna theory. The main targets have always been

to address the capacity and speed of the communication through code and

infrastructural design improvement in the underlying network layout [1–3].

Communications between transmitter and receiver ends has also transitioned

from stationary units to mobile units with portability and interference in-

creasing the complexity of the wireless communication systems [4, 5]. Thus,

there is a dire need to investigate mechanisms which can support rapid in-

crease in data rate as well as speed influencing the baseline system in terms

of economics as well as hardware equipment. This thesis addresses the issues

of efficient spectrum utilization as well as data rates by working on efficient

data communication techniques. These have the capacity to provide reliable

data transmission between transmitter and receiver without compromising

the data rates and the antenna dimensions.
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CHAPTER 1. INTRODUCTION 2

In wireless communication systems, targeting higher data rates with the

present resources in the network for communication has been considered as

the most challenging concern in research [6]. The spectrum is limited in

terms of bandwidth while the devices have power restrictions [7]. Base sta-

tion (BS) as well as user equipment (UE) are both limited in terms of size

and mobility flexibility [8]. In light of all these issues, the design and de-

velopment of data communication techniques that can address the broader

requirements of the future wireless communication systems with improved

data rates and spectral efficiency is cumbersome and demands fine balancing

with the issues of mobility, size and power of the equipment at transmitter as

well as receiver. This work has a been done to address the data communica-

tion between multiple antennas at both transmitter and receiver considering

the environment being extremely unpredictable due to scattering, reflections,

refractions, etc. The prime aim is to achieve better data rates as well as diver-

sity gains with least infrastructural alterations. This proposal is valuable for

the future of next generation wireless communication systems which involve

massive multiple-input multiple-output (MIMO) systems.

1.1 Wireless Communication Systems and its

Challenges

In wireless communication systems, the research initiated with the design of

communication models consisting of single set of transmit and receive anten-

nas. This tracks back to the time when there was very less interference in

the spectrum and communication was possible with such limited infrastruc-

ture. But soon, the communication channel started becoming populated and

thus introduced the challenges of data reliability [9]. Consequently, space-

2



CHAPTER 1. INTRODUCTION 3

time coding emerged as a solution where multiple copies of a data stream

was transmitted through the communication channel using multiple anten-

nas [10]. This provided multiple copies of data at the receiver which increased

the level of reliability of the data transfer [11]. The main motivation behind

the design of space-time coding has been the fact that, after passing through

a communication medium which is affected by scattering, reflections and re-

fraction with possible distortions in data due to imperfect receivers, some of

the copies received might be much closer to the original signals due to the

channel being completely random. Reception of multiple copies of the same

signal at the receiver improves the chances of retrieving the original signal

through efficient decoding mechanisms [12]. Thus, the reliability of the sys-

tem increases by using multiple antennas and space-time coding. Effectively,

space-time coding is the fine integration or selection from these copies of data

received to decode the original message.

1.1.1 Space Time Block Codes

Space-time coding comprises of a wireless communication system which has

multiple transmit antennas with the flexibility to have any number of receive

antennas. There are two variants of space-time coding including space-time

trellis codes (STTCs) and space-time block codes. Space-time trellis codes

are efficient in promising coding gain as well as transmit diversity gains with

a drawback of computationally complex decoders at the receiving end. On

the other hand, space-time block codes do not ensure coding gains but they

provide better transmit diversity gains with the advantage of low-complexity

decoders [13]. In space-time block coding, the data to be transmitted through

the data streams is divided into blocks where each block of data is transmitted

using the space and time diversities. Each data block is transmitted through

3



CHAPTER 1. INTRODUCTION 4

a set of transmit antennas in multiple timeslots [14], [15]. Such division of

data across the data streams through multiple transmit antennas empowers

the communication to eliminate the effects of fading and interference caused

by the channel impairments at the receiving end. Alamouti was the first to

propose the design of a complex orthogonal space-time block code (COSTBC)

for two transmit antennas [1]. He explored that space-time block codes which

satisfy the property of orthogonality ensures simplification of the maximum-

likelihood (ML) decoding rule by promising linear and decoupled decoding

at the receiver. The additional benefit of reduced receiver complexity by

maintaining orthogonality introduced limitations on the code rates that can

be achieved when the number of antennas are increased. Although, having

ambiguities and limitations, this proposal paved the way for research and re-

alization of next generation of wireless communication systems starting from

3G and beyond. Many studies have been done to address the issue of code

designs with multiple antenna systems including design of quasi-orthogonal

codes which can promise higher code rates at a nominal compromise on the

orthogonality of the space-time block codes [16]. This compromise in orthog-

onality comes at the expense of computationally complex decoders which

provides pair-wise or completely coupled decoding [17], [18]. The quest for

designing space-time block codes which can achieves better diversity gains

with higher code rates remains as an open area of research in literature.

1.1.2 Exploiting Polarization Diversity: Quaternion Or-

thogonal Designs

Wireless communication systems have reached to a bottleneck of the code rate

versus the maximum number of antennas that can be used maintaining the

orthogonality condition. The future generation of wireless communication

4
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systems target MIMO systems to achieve diversity gains. Thus, to address

the barrier of the limited code rates in STBC designs, other forms of diversi-

ties, i.e. polarization diversity, in addition to space and time diversities are

studied [19]. The advancements in antenna theory has also moved hand-in

hand from single polarized antennas towards dual-polarized (DP) and multi-

polarized designs. A single DP antenna is equipped to transmit and receive

two signals in orthogonal polarizations, simultaneously. The emergence of DP

antenna opened new dimensions of research where studies worked new models

to target better diversity gains, code rates and decoder designs with hardly

any significant change in the antenna dimensions. QODs have been presented

in [20], which opened new directions for research and introduced the concepts

of orthogonal space-time polarization block codes
(
OSTPBCs

)
. Integration

of STBCs with combinations of different forms of diversities, i.e. space, time

and polarization, can help in surpassing the bottleneck of capcity in wire-

less communication systems. Working with STBCs over the foundations of

polarization diversity provides gains in performance and diversity which di-

rectly maps to efficient cost, time and space solutions [21], [22]. This can be

achieved without any effect and increase in the antenna dimensions [20].

Quaternion algebra has been used in the design of STBCs since more

than a decade now, in an urge to address the limitations of code rate and

the number of antennas, to stimulate the future needs of massive MIMO

systems. Studies done considering the design of STBCs using polarization

diversity and DP antennas have laid their foundations on the complex chan-

nel model which fails to completely exploit the advantages of pure quater-

nions. The designs presented consider quaternions consisting of two complex

numbers transmitted through the two orthogonal polarizations of the DP

antennas. Different studies exist which address the design of QODs using

5



CHAPTER 1. INTRODUCTION 6

Figure 1.1: Two-input two-output (TITO) antenna configuration of single-
polarized antennas.

different construction techniques [20]. All these designs were built by de-

signing quasi-orthogonal STBCs in the complex domain and none of them

directly employed the quaternion algebra in its pure form. Today, we are

available with more variety in terms of hardware, where the STBCs has to

be addressed again in combination with appropriate forms of diversities, i.e.

space, time, polarization, etc., by fine integration of developments in antenna

theory and algebra to tailor the need of higher data rates, reduced latency

and reliability in next generation wireless communication systems.

1.2 Motivation

Last few decades have changed the way communication takes place, tar-

geting higher data rates, reduced latency, improved spectral efficiency and

hardware optimization. A lot of work has been done for 5G systems, e.g.

see [23–56]. Figure 1.1 describes antenna configuration for a two-input two-

output (TITO) single-polarized antennas. the communication channel com-

prises of complex channel gains between each pair of transmit and receive

single-polarized antennas, i.e. hij ∈ C where i.j ∈
[
1, 2
]
. Alamouti presented

6
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Figure 1.2: Single-input single-output (SISO) antenna configuration of DP an-
tennas.

a full rate orthogonal STBC for this configuration, exploiting space and time

diversities, opening numerous dimensions for design and research in orthog-

onal code designs [1]. In order to achieve considerable diversity gains and

bit error rate (BER) performance at higher signal-to-noise ratio (SNR), this

design is constrained in terms of maintaining antenna spacing and decoder

complexity to maintain spatially independent streams across the medium of

transmission. All the work till date fails to exploit the use of quaternions

in its pure form. Rather, complex representation of quaternions is used by

compromising the orthogonality and contributing to the computational com-

plexity of the decoder at the receiving end.

With the demands of the future wireless communication systems to sup-

port higher data rates and capacity, the solution lies entirely in increasing the

number of antennas at the transmitter and receiver ends. The design of DP

antennas has initiated research which targets polarization diversity. Polar-

ization diversity exploits the decorrelation of the data received at orthogonal

polarizations of the DP antenna to attain the diversity gains. Quaternion

algebra has been integrated with DP antennas to address limiting issues of

code rate, diversity gain and spectral efficiency. Figure 1.2 provides antenna

7
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configuration for single-input single-output (SISO) DP antennas. With the

status of research at present, the underlying channel is complex. This be-

comes the major bottleneck in exploiting the real benefits behind using po-

larization diversity through DP antennas. This work will explore the nature

of channel and code design when DP antennas are used for the design of or-

thogonal space-time polarizational block codes. Contrary to what has been

done in the past, the motivation behind this research is to study the baseline

contributions made when DP antennas are integrated into the wireless com-

munication system and pure quaternions are considered as basic algebraic

representation of signals and channel. Effects of the transmission of STBCs

through orthogonal polarizations will be studied. Code design in light of this

changing paradigm will be explored with a composite study of how it affects

the receiver side and the decoder complexity.

1.3 Contributions

The main contribution of this research work have been summarized below.

1. Quaternions offer a better solution especially for DP antennas to attain

polarization diversity gains without exploiting time diversity. Such de-

signs achieve better throughput and linear decoupled decoding solution

is an intrinsic feature of the approach. A new system model has been

proposed based on pure quaternion channel, i.e. quaternionic channel,

which provides optimal solutions to the aforementioned problems. This

channel model provides better opportunity to exploit the polarization

diversity independently. It turned out that the above construction leads

to following major achievements.

(a) Natural realization of quaternions where a natural path has been

8



CHAPTER 1. INTRODUCTION 9

taken from the complex z = x + iy, to quaternions q = z1 + z2j

and h = h1 + h2j, with analogous structure.

(b) Quaternionic form of channel with one possible explanation that

it inherits effects in two orthogonal polarization planes after re-

flections, scattering etc.

(c) An effective way to generate space time codes for DP antennas.

(d) An incredibly high throughput in all space time codes in compar-

ison to standard Almaouti analogues.

(e) Built-in linear and decoupled decoders.

(f) One possible way to attain polarization diversity without relying

on time diversity.

(g) An efficient procedure to deal with MIMO systems.

A QOD of order one using a 1× 1 DP antenna confuguration has been

proposed that provides more information as compared to the standard

Alamouti code for a 2 × 2 single-polarized antenna configuration [57].

The details of the complete system with its outstanding diversity gains

have been detailed in Chapter 4.

2. In the presence of fully quaternion-valued channel model, design of

linear and decoupled decoder for QODs based on Adam-Lax-Phillips

approach has been presented in Chapter 5 and published in [58].

3. Quaternion modulation using the quaternionic channel model has been

developed that is independent of the cross-polar scattering effects in

Chapter 6. This defines the application of the proposed quaternionic

channel model and the pure quaternion space-time polarization block

codes (STPBCs) that fully exploits polarization using the DP antennas

9
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in addition to space and time diversities to achieve maximum perfor-

mance. This quaternion modulation has been discussed for its applica-

tion in future massive MIMO systems by extending the work to higher

dimensions and providing simulation results [59].

4. Generalized construction techniques have been presented in Chapter

7. They are designed using Liang construction approach [60]. This not

only proposes linear and decoupled decoding solution for all the STBCs

obtained from the QODs but also presents the decoupled decoding of

quasi-orthogonal QODs constructed using the Liang’s approach. This

also supports feasibility of QODs for future massive MIMO systems.

1.4 Thesis Organization

This thesis is organised as follows:

In Chapter 2, massive MIMO have been discussed in terms of their

prospects related to the future generations of wireless communication sys-

tems. The major challenges and salient research dimensions are discussed

with an insight into how this work contributes towards the current and fu-

ture developments.

In Chapter 3, the focus is made on STBC. A brief literature review on the

space-time block coding using DP antennas is given. Then, a short review

of the coding and decoding techniques of the QODs are studied.

In Chapter 4, emphasis is laid on the design of a new channel model based

on pure quaternions using DP antennas. After a brief literature review on

QODs using DP antennas, the detailed quaternionic model is discussed and

different codes are developed for more than one DP antennas. Finally, this

channel model is investigated for different QODs using simulation results.

10
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In Chapter 5, the focus is made on quasi-orthogonal codes. A generic

review of quasi-orthogonal codes is presented, followed by the investigation of

these codes considering the new channel model. The decoding of these quasi-

orthogonal codes, that has remained a research issue, has been optimized

using the new channel model based on pure quaternion through simulation

results.

In Chapter 6, the proposed channel model has been investigated for its

application in modulation. To deal with it, the quaternion modulation using

DP antennas has been studied, that embeds the new channel model. The

gains have been evaluated through simulation results.

In Chapter 7, the design of the QODs have been explored using non-

iterative techniques. The decoding and code rates of these codes have been

discussed. The design of the quasi-orthogonal codes from this proposal

presents optimal decoding complexity. The simulation results have been

presented and discussed to support the contributions.

Lastly, in Chapter 8, the conclusions and prospects of the work are dis-

cussed. A list of possible future developments and recommendations has also

been presented.

11



Chapter 2

Massive Multiple-Input

Multiple-Output (MIMO)

Systems

2.1 Introduction

Massive MIMO is a system that uses very large number of antennas, i.e. hun-

dreds or thousands, at either or both the transmitter or receiver ends of a

wireless communication network. The conventional SISO systems used single

antenna at both the transmitter and receiver. The main aim behind this is

to provide additional efficiency to the 5G and future wireless communication

generations in terms of energy and respective characteristics including the

higher data rates due to large number of antennas capable of transmitting

independent data streams at the transmitter [61]. MIMO outperforms SISO

in terms of enhanced spectral efficiency, increased throughput, improved ca-

pacity, higher bit-rate, reduced BER and reliability with less or no impact

on the underlying transmit power and bandwidth [62]. Due to these attrac-

12
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tive features, MIMO has been researched and numerous new techniques have

been developed for future generation of wireless communication networks.

2.1.1 Benefits of Massive MIMO

Concept of massive MIMO emerged in last decade but it gained huge at-

tention in a very short period of time due to its benefits in 5G. It emerged

as one of the most rigorously investigated areas of wireless communication

networks and systems. The MIMO systems present today lack in the ability

to meet the drastic data traffic requirements and spectral efficiency demands

due to the introduction of applications i.e. Internet of Things (IoT), machine

to machine (M2M) communciation and augmented reality [63]. Recent re-

search studies have shown positive improvements in achievement of spectral

efficiency with massive MIMO testbeds, in [64], that has never been possi-

ble before. Also, the hardware testing of these massive MIMO systems were

carried out confirming the possibility of using low-cost and low complexity

hardware for both digital and analog RF chains [63]. Further reduction in the

power and cost has been targeted through design of efficient algorithms for

detection, precoding, scheduling and equalization. Testing and studies have

Figure 2.1: Multiple-input multiple-output (MIMO) system [61].
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Figure 2.2: Challenges in massive MIMO systems [63].

been done to investigate the possibility of deploying near to infinite number

of antennas at the BS. However, the practical testing has confirmed using

64 to 128 antennas at the BS [63]. This brings forth the salient advantage

of massive MIMO where hardware complexity and sophistication increases

only at the BS while the UEs can enjoy having only a single antennas with

simplest antenna design. All these improvements make massive MIMO an

attractive candidate for 5G and future wireless networks.

Some of the other benefits of massive MIMO technology has been listed

below:

• Energy efficiency

• Spectral efficiency

• Data rate improvement

• Power efficiency

• Reduced latency

14
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• Increased reliability [65, 66]

• Low Bit-error rates

• Linear processing modules

• Robust and resilient against fading, interference and jamming [67,68]

• Greater security [69]

2.1.2 Challenges of Massive MIMO

With all the competitive advantages of massive MIMO, it still falls short of

into different areas resulting in some major challenges, as shown in Figure

2.2. Each of them is discussed briefly below.

• Pilot contamination: The BS in a wireless communication system

is able to accurately estimate the channel through the reception of

pilot signals from the UEs in the home cell, where the pilot signals of

the home and the neighbouring cells are orthogonal. Due to limited

number of orthogonal pilot signals available for use with given period

and bandwidth, the neighbouring cells might reuse the same orthogonal

pilot signals. This might result in the BS receiving a linear combination

of the channel response from the home and neighbouring cell. This

mechanism is known as pilot contamination and has serious impact

on the throughput. Research has been done to estimate the channel

response to target accurately the user in the home cell using efficient

beamforming techniques. It has been identified that increase in the

number of antennas at the BS has a positive impact on the overall

estimation process [63]. Also, studies have been done to develop pilot
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reuse techniques and conservative use of the available orthogonal pilot

signals [70–73].

• Channel estimation: In massive MIMO systems, for the receiver to

detect and decode the signal accurately, the information about the state

of the communication link (i.e. effect of fading, scattering, etc.) be-

tween the transmitter and receiver is critical. This is known as Channel

State Information (CSI). If the receiver is able to acquire the precise

CSI, the performance of the massive MIMO system increases linearly

with the increase in number of transmit or receiver antennas (whichever

is less). Thus, channel estimation remains as one of the most investi-

gated areas in massive MIMO systems [74–76].

• Signal detection: Due to the large number of antennas at the BS

as well as the interference because of the numerous UEs sending the

signals to the same BS, signal detection becomes cumbersome. This

domain has attracted researchers to investigate and develop optimal

signal detection methods with higher throughput [77, 78]. Increased

number of antennas in the massive MIMO systems adversely influences

the computational complexity of the decoder, that remains as a great

challenge.

• Precoding: The concept of manipulating the signals to transmit them

as multiple streams using multiple antennas. Precoding helps in achiev-

ing promising throughput by minimizing interference and path loss.

Precoding is used by the BS in combination with the estimated CSI

to overcome the effects of interference and fading [63]. The benefits of

precoding are prominent in massive MIMO systems but the computa-

tional complexity also increases with the increased number of antennas.
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This has influenced studies to design less complex precoders [79–81].

• Hardware impairments: To achieve the benefits of massive MIMO

systems, the number of antennas need to be increased considerably.

This increase in the number of antennas provide positive support to-

wards handling of issues arising from interference, fading and noise.

However, this also raises concerns in terms of increased hardware costs

and requirements [63]. For a massive MIMO system, the huge num-

ber of antennas demand cost and computationally efficient hardware

designs. While, on the other end, the use of such low cost equipment

introduces hardware imperfections i.e. amplifier distortion, magneti-

zation noise and phase noise [82]. Such large number of antenna el-

ements introduces mutual coupling and increased power requirements

that has great impact on the overall system performance. Investigation

of compensation techniques to mitigate the impact of these hardware

impairments has shown supportive results [83, 84].

• User scheduling: Due to the support of multiple antennas in massive

MIMO systems, the BS can connect and communicate with multiple

users at the same time. This provides valuable performance boost

to the massive MIMO system but brings in the issues of multi-user

interference and reduced throughput [63]. As the number of antennas is

higher in the massive MIMO system, only precoding remains sufficient.

But this demands an extra module of special user scheduling algorithm

when the number of users exceed the number of antennas at the BS.

Efficient user scheduling algorithms have been studied for the massive

MIMO systems to address the concerns of computational complexity

and throughput [85–87].
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Figure 2.3: Precoding in Massive MIMO system [63].

2.1.3 Precoding in Massive MIMO

Investigation of all the above challenging areas define numerous dimensions

that can be independently or collectively studied to contribute to the devel-

opments in massive MIMO systems. MIMO has been classified in [88] into

three main categories including Beam Forming Techniques, Spatial Multi-

plexing Techniques and Antenna Diversity Techniques. This research work

addresses the issue of precoding where the specific dimension of spatial di-

versity is explored.

• Beamforming: In beamforming technique, the concept of optimizing

the beam size and width is utilized through the use of smart antennas.

This is done under the consideration of the environmental variations

and location of the receiver. Multiple antennas are manipulated to

form beams directed to specific users for better signal-to-interference

ratio (SINR) and thus gains better throughput. The transmitter is

equipped with efficient signal processing modules capable of adapting

to the changing conditions of the receiver and environment in the wire-
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less system. Also, precoded tables are used that resemble hard coded

beams that are decided in advance. Beam Forming helps to generate

improved and high output signals for the mobile users [89]. Research is

being done in generating efficient beam forming techniques in analog,

digital and hybrid domains to target higher capacity requirements (i.e.

thousand times higher) as well as maintaining energy constraints of the

5G networks [90].

• Spatial multiplexing methods: Multiple data streams are used to

increase the system throughput. Spatial multiplexing exploits the ex-

istence of multiple channels between the transmitter and receiver pairs

to support independent data streams. This forms parallel data streams

between respective transmiter-receiver pairs. For a massive MIMO sys-

tem with N transmit antennas, N sub streams can be created between

the transmitter and receivers. The receivers are equipped with ade-

quate combining schemes to collect the incoming signals and form the

signal [91].

• Antenna diversity techniques: Also known as spatial diversity tech-

niques, the presence of multiple antennas is manipulated to generate a

signal at the receiver with less fading. This has two main forms namely

transmit diversity and receiver diversity. Copies of the same signal is

transmitted using the multiple antennas that are spaced at least half

a wavelength apart from each other. This is known as transmit diver-

sity where precoding of the transmit antennas is done to ensure that

the signals received at the receiver remain uncorrelated. These signals

travel across the channel and are received at the receiver with differ-

ent energies. The receiver uses efficient combining schemes to recover
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the original signal with considerable SNR [63]. The use of multiple

antennas at the receiver to successfully recover the signal is known as

receiver diversity. Combination of transmit and receiver diversity has

been targeted to achieve recovery of a single data stream between each

transmitter and receiver pair.

Considering the spatial multiplexing and antenna diversity techniques,

both have their own benefits in supporting better performance. The former

has the advantage of higher data rates while the latter supports optimized

bit-error rates. As in [63], both benefits of higher data rates and reduced bit-

error rates can not be achieved together and a compromise has to be made in

selecting one of these techniques, i.e. spatial multiplexing or antenna diver-

sity. To target better bit-error rate, redundancy can be introduced using the

multiple antennas and the same information sequence. The most common

type of this technique utilized space and time to transmit redundant data

signals and is known as space-time coding. The receiver uses appropriate

signal combining techniques to recover the signal [91]. The benefit of using

antenna diversity schemes is better diversity gains with considerable cod-

ing gain without compromise on the bit-error rate [63]. Space-time coding

has been used to implement spatial diversity techniques where STTCs and

STBCs have been studied as the two main variants [62].

2.1.4 Research Motivation

It is evident from the above discussion that precoding is a major concern

in massive MIMO as well as future generation of wireless communication

networks. This research work targets the design of efficient STBCs to address

the issue of precoding in the massive MIMO systems. A novel system model is

designed and presented based on hyper-complex variables using DP antennas.
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This work addresses the problem of limited data rates when it comes to

using multiple antennas elements and increased transmit symbols. Novel

coding paradigms are proposed that consider the concerns about throughput

in massive MIMO and future wireless systems. Both transmit and receiver

diversities are studied for their influence in optimizing the performance of

the massive MIMO systems for 5G networks and beyond.
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Chapter 3

Literature Review

The future of wireless communications demands high data rates, better cov-

erage, negligible latency, enhanced reliability and ultra-high quality of audio

as well as video transmissions. The modern wireless systems have incorpo-

rated mobility and communication between distant places where the com-

munication can experience scattering, reflection, diffraction and multipath

fading [1]. The underlying environments are also diverse including indoor

and outdoor; rural, urban and suburban; and, micro, macro and picocellular.

Dealing with such diverse environments demand power and bandwidth effi-

cient BS as well as remote devices yet they are aimed to be small in their size.

Considering all these requirements, studies have been evaluated to target the

spectral efficiency for achieving greater data rates by enhancing the antenna

design and incorporating efficient data communication schemes. The main

research challenge is the achievement of a cost and performance efficient so-

lution within the restricted antenna designs and resources of the wireless

communication systems. Following sections will appreciate the studies which

highlight the significance of multiple antennas at transmitter and receiver

ends of the communication link followed by an analysis of how antennas and
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data communication schemes can be integrated together for efficient perfor-

mance results. In this regime, space-time coding will be studied, which is

one of the data communication techniques.

3.1 Multiple Transmit and Receive Antennas

Early wireless communications, i.e. until early 1990s, comprised of infrastruc-

ture with only the receiver equipped with antenna arrays while the transmit-

ter had a single antenna. This paradigm shifted when studies articulated the

importance of antenna arrays at both ends of the wireless communication

channel [92–94]. These emphasized on the fact that for higher scattering

environments, use of antennas arrays at both the transmitter and receiver

ends can generate gains in terms of better channel efficiency and data rates.

Different variants of these antenna arrays at the two ends of the wireless

communication channel have been studied including antenna arrays at the

receiver only, antenna arrays at both the ends of the link and finally, antenna

arrays only at the transmitter. The reliability of the wireless communication

channel is mostly influenced to deteriorate due to the multipath fading, which

incorporates bigger challenges as compared to wired and even satellite com-

munication cases. Factors like transmitter power control and sacrificing the

channel bandwidth provide a direct increase in the SNR of the wireless com-

munication link. The first factor is the most effective scheme to address the

issue of multipath fading yet it exposes the wireless communication system to

two major issues. First, the transmitter needs to increase its transmit power

which has constraints in terms of cost and size of the underlying equipment.

Second, the transmitter can gain knowledge about channel’s state through

a feedback channel from the receiver which is exhaustive in terms of link
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throughput and complexity at both ends of the communication link. Yet,

these changes are in direct contrast to the demands of the future generations

of wireless communication systems. Thus, addressing the multipath fading at

both the remote UE and BS without increasing transmit power or sacrificing

channel bandwidth seems a very optimistic goal.

Diversity techniques has been put forth in research studies as alternative

techniques which are effective in fighting the multipath fading. Known forms

of diversity techniques include frequency diversity, time diversity, space diver-

sity and polarization diversity [95]. Time interleaving and spread spectrum

has been studied in addressing the issue of multipath fading in the paradigm

of time and frequency diversity, respectively. The limitation of the delays

in the slowly varying channel and restrictions on the coherence bandwidth

being significantly different as compared to the spreading bandwidth due to

the channel having small delay spread. Antenna diversity is the practical

approach to this mitigate the effects of multipath fading [1]. The classical

method used multiple antennas at the receiver and used selection or combin-

ing techniques to enhance the signal power and achieve better signal quality.

This approach brings in the concerns about cost, power and size of the remote

UEs. Thus, in order to preserve the simplicity of the remote UEs, diversity

techniques have been used at the BSs to get better signal quality and system

performance.

Hundreds and thousands of remote units are served by a single BS. Thus,

any additional equipment and circuitry installed at a single BS proves much

more economical as compared to the cost of the installation of the same

equipment at so many remote units. Thus, the best solution is to use trans-

mit diversity techniques where additional antennas and transmit chains are

added to the BS improving the quality of the signal received at the receiver
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and optimizing the infrastructural expenses to a minimum level. In litera-

ture, different techniques have been used to integrate transmit diversity into

the wireless communication infrastructure. one of the technique sent multiple

copies of the same signal using multiple transmit antennas at different time

intervals. At the receiver, maximum-likelihood sequence estimator (MLSE)

or a minimum mean-squared error (MMSE) equalizer is used to obtain the

original signal with considerable diversity gains [96, 97]. Other techniques

have also been proposed to exploit the use of transmit diversity with coding

techniques to combat multipath fading and achieve better diversity gains.

STTCs have been used in combination with transmit antenna diversity to

achieve coding and diversity gains, where maximum likelihood decoder is

used at the receiver to decode the symbols [98]. Although, this solution

did proved beneficial, it is computationally expensive. Thus, it cannot be

deployed for systems which demand efficiency in terms of cost and computa-

tions. The cost of processing in the STTCs based transmit diversity scheme

increases exponentially with increasing diversity order and bandwidth effi-

ciency (bits / s/ Hz). At this point, in 1998, Alamouti presented the solution

to multipath fading through a simple transmit diversity scheme [1]. In this

scheme, the transmission symbols are processed for transmission through two

transmit antennas to achieve better signal quality at the receiving end. This

transmitted symbols were decoded using maximum likelihood decoding rules

and the achieved diversity order matched that of maximum-ratio receiver

combining (MRRC), where two antennas were used at the receiving end.

The proposed scheme by Alamouti proved to be the classical work where

transmit diversity was exploited to achieve better performance. The diver-

sity order of this scheme could be increased to 2M, if two transmit and M

receiver antennas are used. Alamouti scheme became a foundation in the area
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of space-time block coding for addressing multipath fading. It overcame the

need of computational complexity, redundancy of transmit symbols and any

receiver feedback, as it exploits the use of space through multiple antennas

and not time or frequency for its symbol transmission.

Use of multiple transmit and receive antennas have been extensively

adopted in the areas of communication systems and information theory to

generate diversity gains with improved system reliability and promising data

rates. Such systems can be deployed in diverse environments and applica-

tions. Integration of receive antenna diversity with transmit diversity adds

to the diversity and performance gains at the cost of added equipment at the

remote UEs. Yet, this surely becomes a beneficial approach for applications

where quality of the received signal, reliability and data rate is the prior-

ity. Recently, studies have shown that MIMO increases the capacity of the

channel significantly in comparison to the single-transmit single receive an-

tenna systems with constraints of maintaining similar power and bandwidth

requirements [99–101]. Thus, next generation wireless communication sys-

tems demand efficient data communication techniques deployed over MIMO

systems to meet the challenges of higher data rates, reduced latency and

promising diversity gains.

3.2 Orthogonal Code Designs

In wireless communication, the signal travels through diverse environments

with reflection, refraction, scattering and other effects like thermal noise.

These influence the quality of the signal while it moves from the transmitter

to the receiver. In space-time block coding, multiple copies of data are trans-

mitted through multiple spaced antennas forming independent data streams
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Figure 3.1: Matrix representation for an STBC

generating many data paths to the receiver. In presence of the above men-

tioned factors, some of these copies might get severely effected while other

copies might reach to the receiver matching closely to the transmitted signal

quality [98]. This has been made possible due to the redundancy produced

through space-time block coding, which enables fine combination of all the

copies of the received signal through efficient decoding techniques. Alam-

outi, for the first time, presented a transmit diversity scheme using block

codes.. Later, several studies were done based on construction and benefits

of STBCs [102].

An STBC can be represented using a matrix where the columns represent

the transmission from each transmit antenna over time while each row defines

the timeslot, as shown in Figure 3.1. The entries of this matrix are the

modulated symbols, sij, i = 1 . . . T, j = 1 . . . N , where T is the number of

timeslots required to transmit a single code block and N is the number of

transmit antennas, being transmitted from jth transmit antenna in the ith

timeslot. The code rate, r, of a STBC with k number of symbols is the ratio

of the number of symbols and the timeslot [102], given in Equation (3.1).

The Alamouti code is defined for two transmit one receive antenna
(
2 × 1

)
and achieves full rate

(
r = 1

)
.

r =
k

T
(3.1)
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C =

 c1 c2

−c∗2 c∗1

 , (3.2)

where ci, i = 1, 2 can be real or complex numbers. Alamouti’s scheme consid-

ers the complex channel between the transmitter and receiver. Is defined by

three functions including the encoding and transmission sequence of the data

symbols at the transmitter, the combining scheme at the receiver, and the

decision rule to recover the original signal from the encoded data symbol at

the receiver [1]. The code developed by Alamouti was a COD that supported

decoupled decoding at the receiver.

Definition 2.1: A generalize COD A, on commuting complex number

{z1, z2, . . . , zn} of type {s1, s2, . . . , sn} is anm×n matrix with entries from the

set { 0,±z1,±z∗1 ,±z2,±z∗2 , . . . ,±zn,±z∗n} including possible multiplications

by complex imaginary unit i and satisfies the following condition

CHC =
n∑
h=1

(sh(|zh|)2)In×n = λIn×n , (3.3)

where In×n is the n×n identity matrix, H is the Hermitian tranform, λ is a

positive real number and so the columns of A are formally orthogonal.

Alamouti presented this scheme for two transmit antennas with one and

two receive antenna combinations. This resulted in exploiting the space and

time diversities to ensure orthogonality of the code with increased diversity

gains. The results showed significant diversity gains due to increased receiver

diversity while this has been traded with the reduced code rate with increased

number of transmit antennas.

STBCs, introduced as a generalization of the Alamouti Scheme, are or-

thogonal. Orthogonality is seen when any two pair of columns of the STBC
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are orthogonal. This reflects onto the receiver side in terms of simplicity

and linearity at the decoder. Such an STBC is supposed to comply to the

conditions of the code rate. Also, there is a specific class of STBCs which

supports greater data rates by compromising orthogonality and experiencing

inter-symbol interference (ISI). These STBCs are known as quasi-othrogonal

STBCs.

Orthogonal designs have been used for wireless communication with mul-

tiple transmitters and receivers as STBCs. These are known to have maxi-

mum transmit diversity with simple decoupled decoding at the receiver. The

aim is to achieve maximum rate to by increasing the bandwidth efficiency

through the use of orthogonal designs [16]. In this quest, the struggles have

been made to design codes which maximize rate considering real as well as

complex symbols.

Definition 2.2: A real orthogonal design Ox is a m × n rectangular

matrix with entries from the set { 0,±x1,±x2,±x3, . . . ,±zn} and satisfies

the following condition

Ox
TOx =

n∑
h=1

(xh)
2In×n = λIn×n , (3.4)

where In×n is the n × n identity matrix, T is the transpose of a matrix

tranform, λ is a positive real number and so the columns of A are formally

orthogonal.

3.2.1 QODs

With advancements in the underlying technology and communication paradigms,

the need to increase the capacity of the wireless communication system has

become a goal for researchers. Thus, investigation to develop newer and
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more efficient means of coding of the data symbols increased [13, 102]. This

initiated the need to consider better antenna designs. Also, considering the

flexibility and benefits of STBCs, which are adopting well with multiple an-

tennas and promising performance gains, they have been studied as a valuable

candidate for next generation MIMO systems [13,98,102–108].

DP antennas have been adopted in literature as the infrastructural reform

in the point-to-point wireless communication. This is presented in the realm

of having two orthogonal antennas installed together on a single antenna

base. DP antenna designs have been studied as they exhibit the flexibility

to transmit and receive two symbols simultaneously. This has been adopted

due to the increased demands for higher channel capacity and data rates. DP

antennas has been used to exploit the polarization diversity. In [109,110], DP

antennas were used to integrate the wireless channel model with quaternion

codes. These codes were defined over quaternion algebra concepts over the

complex domain. The designs presented using the quaternion algebra are

known as QODs. They were claimed to integrate another form of diversity

to the STBC designs, i.e. polarization diversity. QODs provide a valuable

platform to exploit the polarization diversity in addition to space and time

diversities. However, this has its own trade offs in terms of constructing

orthogonal codes from the noncommutative nature of the quaternions.

In order to develop orthogonal codes using quaternion algebra and DP

antennas, in [20], authors developed a system model where the STBCs are

used to integrate polarization diversity for the development of orthogonal

code designs. To investigate several methods to build QODs, Seberry and

his team developed different construction techniques. First comprised of

designs based on existing orthogonal and COD designs. These were obtained

using quaternion permutation matrices or the symmetric paired designs (i.e.
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A + Bj). Work done in this area has been promising in creating entirely

a new dimension for research. However, it remained inefficient in achieving

the real goal of exploiting the polarization diversity for higher code rates.

Also, the QODs developed using the existing CODs are expected to face the

same limitation as with CODs in terms of increased decoding complexity

and limited code rates. The inherent constraints on the CODs propagates to

the QODs designed from them. Thus, in [20], authors developed QODs and

related theory that was independent of the existing CODs. These comprises

of quaternion-commuting variables, amicable designs and size two QODs.

First method was a simple generalization of the orthogonal and CODs in a

constraint system model. Second and third QOD construction techniques

did provided QOD designs in a unique way but the number of constraint to

achieve this goal kept them unaccepted.

Considering these schemes, none of the proposal could explicitly show

that a full QOD is transmitted using the DP antenna and its polarizations.

Thus, this remained as an open area to study the future of QODs independent

of the CODs. Use of complex OSTBCs has been shown to support better

performance. Similar was studied in the need to develop a system that can

exploit polarization diversity independently. Complex OSTBCs and OSTP-

BCs are the same in transmitting the signals using multiple antennas but

here, in the case of OSTPBCs, the antennas used for communication are DP

antennas.

3.3 Research Gaps

Work has been done in quaternion domain [13,20,98,102,109,110] to design

orthogonal codes that provide higher diversity gains. These codes has been
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designed using the complex orthogonal codes or complex quasi-orthogonal

codes. This limits the true exploitation of the polarization diversity when

the DP antennas are used. The explicit representation of the communication

channel for DP antennas and the code structure has not been addressed

using the pure quaternion algebra. This leaves the gains entirely dependent

on exploiting together the space, time and polarization diversities. There is a

requirement to investigate the effects of polarization diversity independently

while integrated into the system of DP antennas using pure quaternions.

This study will address these shortcomings by addressing the QODs based

on pure quaternion algebra. Also the underlying channel characteristics will

be studied to determine the impact of using DP antennas as the transmitter

and receiver antennas.
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Optimal Polarization Diversity

Gain in DP Antennas Using

Quaternions

Over the past few decades, wireless communication aims to support high

data rates and reliability and thus several techniques exploiting space, time

and polarization diversities have been used to achieve large diversity gains

[111–113]. Orthogonal space time block codes (OSTBC) in combination with

polarization diversity promise optimal diversity gains [109]. For DP anten-

nas, a new system model based on quaternionic structure of the channel is

proposed in this thesis that offers a way to exploit polarization diversity in-

dependently of other forms of diversities. Moreover, such OSTPBC achieve

better throughput and provide a linear decoupled decoding solution at the

receiver, which significantly reduces computational complexity.
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4.1 Introduction

Wireless propagation channel experiences attenuation due to multipaths and

multiuser interference which makes the detection of transmitted signal dif-

ficult at the receiver. Transmit antenna diversity is a viable solution where

multiple copies of the same transmitted signal incorporate different delays

and create frequency selective fading. The receiver can process the received

signals to achieve the diversity gain exploiting various forms such as time,

space, frequency or polarization diversity. Increasing the number of trans-

mit antennas enhances the diversity gain yet introduces problems of reduced

code rates and increased receiver complexity [16]. In practice, the insuffi-

cient antenna spacing and the lack of scattering reduces the capacity, owing

to increased channel correlation and for closely spaced antennas, mutual

coupling might not be negligible. Interestingly, the antenna coupling might

be beneficial to MIMO systems [114] contrary to what was believed earlier

that it degrades the capacity. Future generations of mobile communication

demands higher data rates and reduced latency. In order to achieve that dif-

ferent diversity schemes are integrated with polarization diversity [115, 116]

as they can be used to mitigate the multipath effect to maintain a reliable

communication link with an acceptable quality of service (QoS). Polarization

diversity requires no extra bandwidth as well as physical antenna separation.

Polarization diversity enables the simultaneous transmission and reception of

information signals using the orthogonality of the polarized antennas [117].

Recently, the QODs have been studied extensively [20, 109, 118]. In all

such approaches, the quaternion designs were not directly employed, rather

complex quasi-orthogonal STBCs were obtained and different system models

were constructed from them. Such non-orthogonal designs were capable to

achieve higher diversity gains in MIMO systems. However, these designs
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adversely affect the performance for two main reasons. Firstly, because of the

non-orthogonal nature of these codes it was impossible to obtain decoupled

decoding at the receiver end. On the other hand, the theory of QODs was

initially designed following the idea proposed in [19] to exploit polarization

diversity which it failed to attain in general. In STBCs, the polarization

diversity is attained from the cross-polar (CP) components in the wireless

channel which indicates that it relies on the time diversity and cannot be

exploited independently.

In this dissertation, a new system model based on quaternion channels is

proposed that provides optimal solutions to the aforementioned problems. It

is shown that quaternions offer a better solution especially for DP antennas

to attain polarization diversity gains without exploiting time diversity. Such

designs achieve better throughput and linear decoupled decoding solution is

an intrinsic feature of the approach. It is demonstrated that QOD of order

one which is suitable for a 1× 1 configuration of DP antennas provides more

information than the standard Alamouti code for a 2 × 2 single-polarized

system. Besides, the existence of more than one QOD of order two with

maximal rate provides them a sharp edge over an Alamouti scheme in which

there is only a single code of “complex” rate 1.

4.2 Interpreting QODs

A quaternion is represented by two complex numbers as q = z1 + z2j, such

that z1, z2 ∈ C. The quaternion space Q is fundamentally composed of a

non-commutative basis {1, i, j, k}, such that i2 = j2 = k2 = ijk = −1 and

ij = k = −ji, jk = i = −kj, ki = j = −ik. As in the complex domain, the

quaternion conjugate qQ is defined as qQ = z∗1 − jz∗2 , along with the property
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that qQq = qqQ = |q|2. Furthermore, the transpose of a quaternion matrix

Q = [qmn] is defined as QQ = [qQnm] [119].

For DP transmit antennas, we propose a relatively modified system model

where it is assumed that two co-located single-polarized (SP) antennas (hor-

izontal and vertical) of a particular DP antenna are considered as a single

unit, symbolically TD = TH + TV j. We use superscript D to indicate a

DP antenna, where the symbols H and V denote the horizontal and vertical

polarization, respectively. Therefore, the transmission of complex symbols

through a single DP unit can be modeled by a quaternion q = z1+z2j, which

ensures that symbols z1 and z2 are transmitted instantaneously through TH

and TV , respectively. Note that the coupling with j, ensures that the symbol

z2 is transmitted through an orthogonal polarization. Each complex sym-

bol z is obtained from standard modulation schemes, e.g., quadrature phase

shift key (QPSK). In order to exploit diversity gains from space and time,

the OSTPBC can be defined in the quaternion domain [20]. Definition 4.1

(QOD). A QOD Q, on pure quaternion elements

{q1, q2, . . . , qn} of type {s1, s2, . . . , sn} is an m × n matrix with entries from

set { 0, q1, q
∗
1, q2, q

∗
2, . . . , qn, q

∗
n} including possible multiplications on the left

and/or right by quaternion elements q ∈ Q and satisfying the condition

QQQ =
n∑
h=1

(sh(|qh|)2)In×n = λIn×n , (4.1)

where In×n is the n× n identity matrix and λ is a positive real number.

Based on the above realization, it is now natural to redefine code rates

for QODs.

Definition 4.2.

The quaternion code rate rq of a QOD Q, is the ratio of number of trans-
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mitted quaternions to the number of time slots through a combination of DP

antennas.

For example, for a single DP antenna TD, a QODQ1 = [q] where qQq = 1,

has rate rq = 1, transmitting one quaternion in one time slot. It is emphasized

that the above construction is in sharp contrast to the standard procedure

given in [20], [109], [120], [110], where Q1, is thought to be made of two

complex numbers and it yields a quasi codeCq = [z1 z2], which has “complex”

rate 2. Such quasi-codes, Cq, are not used in this chapter and they are

indicated for a brief comparison.

In order to develop quaternion designs over an arbitrary number of trans-

mitting DP antennas, following steps have been considered. First, it is per-

tinent to mention that in all previous approaches [20], [120], the QODs were

obtained by employing conditions on underlying CODs A and B, namely,

they must form a symmetric-pair and satisfy the amicable condition. It was

shown that by permuting columns of one of the CODs, another COD can

be constructed which satisfy both of these conditions. Furthermore, the ma-

trix B needs not necessarily be a permuted version of A [121]. In Theorem

9 of [20], the authors proved that two CODs which form a symmetric pair

design generate a QOD. It was then required to see whether all QODs arise

from symmetric pair designs. In the following theorem, we show that it is

indeed a case.

Theorem 4.1. The necessary and sufficient condition for an STBC in the

quaternion domain Q = A + Bj, to be a QOD is that both A and B are

CODs and satisfy the symmetric property, i.e., (AHB)T = AHB, where (.)H

and (.)T denotes the Hermitian and transpose operators, respectively.

Proof. A QOD Q has a unique decomposition in the complex domain, i.e.,
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Q = A + Bj, where both A and B are two complex matrices of the same
order as of Q. We first note that AQ = AH and following identity holds.
Suppose A = [amn], such that amn ∈ C, then Aj = jA∗ where ∗ denotes
the conjugation operation. Consequently, AHj = jAT and jAH = AT j.
Note that the multiplication with quaternion j eats up the conjugation in
Hermitian. It turns out that

QQQ =(AH − jBH)(A+Bj), (4.2)

=AHA− jBHBj +AHBj − jBHA, (4.3)

=AHA− jBHBj +
(
AHB− (AHB)T

)
j, (4.4)

therefore the condition in Equation (4.1) is true if and only if

AHA = λ1I, B
HB = λ2I, A

HB− (AHB)T = 0.

Hence, proved.

There were four ways indicated in [20] which can be used to obtain viable
QODs of order two. Theorem 4.1 indicates that the construction of QODs
entirely depends on finding two CODs which form symmetric-pair design,
therefore, it can be shown that all those QODs arise from symmetric-pairs.
The problem of generating QODs of order two from a geometrical point of
view has been considered. Supposing a quaternion matrix

Q1 =

q1 q2

q3 q4

 =

z1 + z2j z3 + z4j

z5 + z6j z7 + z8j

 , (4.5)

which can provide a coding matrix of maximum rate rq = 2, for two DP an-
tennas provided Q1 satisfies orthogonality in Equation (4.1). Geometrically,
the requirement in Equation (4.1) can be interpreted as follows. The quater-
nion vectors q1 = [q1 q3]

T ,q2 = [q2 q4]
T , reside in an eight dimensional space

q1,q2 ∈ Q×Q ' R8, containing eight linearly independent real vectors. The
problem now is to choose two such orthogonal vectors from Q×Q, resulting
in
(
8
2

)
= 28 combinations to choose from, such that the resulting pair ensures
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the proposal of Equation (4.1). Since the diagonal entries of QQ
1 Q1 are same,

i.e., |q1|2+ |q2|2. Therefore, to meet the orthogonality condition in Equation
(4.1), the off-diagonal terms must vanish necessarily, i.e.,

qQ1 q2 + qQ3 q4 = 0,

qQ2 q1 + qQ4 q3 = 0. (4.6)

As there are two algebraic equations in four unknown quaternions, therefore,

the quaternionic rate is bounded above by 1, i.e., |rq| ≤ 1 for QODs of

order two. This result seems analogous to an Alamouti code which has a

maximum rate 1 for two single-polarized transmit antennas. However, in

QODs the quaternionic rate rq = 1 corresponds to an STBC with complex

rate 2 which implies transmission of four complex symbols in two time slots.

As is known, there exists no such COD of order two which has “complex” rate

2. More concretely, for four single-polarized antennas corresponding to two

DP antennas, there does not exist any COD which has maximal rate equal

to 1 and it is a unique code of order two which exists only for two transmit

antennas [102]. Therefore, the theory of QODs offers better ways to deal with

the problem of generating codes especially for DP antennas. In addition to

this, there is a class of QODs of order two with maximal rate rq = 1, thereby,

violating the uniqueness condition of Alamouti schemes. Another essential

feature of such QODs is that they provide linear decoupled decoding solution

which is briefly discussed in the subsequent section.
The conditions in Equation (4.6) can be decomposed into a systems of

eight real algebraic equations, which can be solved using any computer alge-
bra system. One such solution of a QOD of order two has been considered
with maximal rate rq = 1, i.e.,

Q2 =

z1 + z2j z4 + z3j

z∗2 − z∗1j −z∗3 + z∗4j

 , (4.7)
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in which two DP antennas transmit two quaternions z1 + z2j and z4 +

z3j, in the first time slot, respectively. Subsequently, z∗2 − z∗1j = −j(z1 +
z2j) and −z∗3 + z∗4j = j(z4 + z3j) are sent in the second time slot. For
completeness, another QOD of maximal rate is constructed. Two quaternions
q1 = z1 + z2j and q2 = z3 + z4j are supposed, such that q1qQ2 does not
contain k − th component. Then, it is easy to generate a QOD such that

Q3 =

i(z1 + z2j) −j(z4 + z3j)

j(z4 + z3j) −i(z1 + z2j)

 . Similarly, another QOD of rate rq = 1/2,

given as

Q4 =

 z1 + z2j j(z1 + z2j)

i(z1 + z2j) −k(z1 + z2j)

 . (4.8)

Likewise, a QOD of order three of “complex” rate 3/4 is,

Q5 =


z1 + z2j z2 + z1j z3 + z3j

−z∗2 + z∗1j z∗1 − z∗2j 0

−z∗3 −z∗3j z∗1 + z∗1j

−z∗3j −z∗3 z∗2 + z∗2j

 . (4.9)

All such codes have decoupled decoding as shown in the subsequent section.

4.3 Quaternionic System Model

4.3.1 Channel Realization

Suppose a system with 1 × 1−configuration of DP antennas. As described

above, the transmission through a DP antenna TD is modeled by a single

quaternion q = z1 + z2j, where z1 and z2 are simultaneously transmitted

through TH and TV , respectively. A quaternionic channel gain is proposed

between transmit and receive DP antennas, given by h = h1+h2j. Therefore,

the received vector is a quaternion and has the form

r = qh+ n, (4.10)
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where n is a quaternionic noise, i.e., n = n1 + n2j. It should be pointed out
that in [20], [120], the same design was implemented in a different way where
a quasi-code was constructed, i.e., Cq = [z1 z2], using an operator C [122].
The necessity of such an operation is due to the channel which was based
on complex numbers. In the proposed model, the channel is quaternionic
where the aim is to exploit quaternion domain and its intrinsic operations
in full spirit. More briefly, the quaternionic form of channel is also studied
in a different context in [123]. For a fair comparison, this situation may be
compared with a 2× 2−single polarized antennas where the system model is

R =

r11 r12

r21 r22

 =

 z1 z2

−z∗2 z∗1

hHH hHV

hV H hV V

+

n11 n12

n21 n22

 . (4.11)

It is clear from above that there are four complex channel coefficients owing

to the fact that there must be four complex channel gains between two DP

antennas. Apparently, the proposed quaternion channel seems to contain two

complex numbers. In order to elaborate our point, it is important to open a

brief discussion on the above design. In this standard approach in Equation

(4.11), the columns refer to horizontal and vertical polarized antennas or vice

versa. Without loss of generality, it can be assumed that the first column

correspond to H-polarized antenna and second column to the V-polarized

antenna. Let us first delve on the working of H-polarized antenna which

refers to first column of R in Equation (4.11). Therefore, r11 and r21 are

received at H-polarized antenna with a time delay. We now look at their

explicit forms

r11 = z1hHH + z2HV H , (4.12)

r21 = −z∗2hHH + z∗1HV H . (4.13)
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Note that in r21, the conjugates of transmitted symbols are employed and

not the original symbols. Furthermore, both received symbols r11 and r21

contain two channel coefficients. This accounts for the time diversity which

is a necessity and that is why four complex channel coefficients are obtained

such that two are in received symbols r11, r21 of H-polarized antenna. The V-

polarized antenna receives r12 and r22, which contains the other two complex

channel coefficients. This costs huge time delays, although, the diversity gain

due to time by sending multiple copies of the original signals is a benefit. This

presents that presence of four complex channel coefficients in Alamouti design

is a necessity due to the time diversity. Here, the aim is to devise a mechanism

to exploit the polarization diversity independently without including any

time diversity. This seems to be possible by using quaternions with DP

antennas.

However, it is important to note that, in the analysis, the quaternionic

product “qh" is very crucial. It is only after its decomposition, the un-

derlying operations behind quaternions became visible. For example, qh =

z1h1 − z2h∗2 + (z1h2 + z2h
∗
1)j, which indicates that the first complex symbol

z1h1 − z2h∗2, which is received at H−polarized antenna is a combination of

two complex channel gains. Similarly, the other part z1h2 + z2h
∗
1, which is

received at V−polarized antenna again contains two complex channel gains.

Therefore, a total of four complex channel gains are present as is expected in

the standard approach. Apart from their simplicity as evident from Equation

(4.10), the quaternions tend to exploit polarization diversity in a transparent

and unique way. For example, the CP components hHV and hV H in Equation

(4.11) are responsible for incorporating the polarization twists by reflection,

scattering and other means [124]. However, their use entirely depends on

sending the same copies of signals in different time slots due to the nature
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of Alamouti code in Equation (4.11). Therefore, the exploitation of polar-

ization diversity relies on time diversity. On the other hand, quaternionic

model Equation (4.10) does not need time diversity at all as both signals z1

and z2 are instantaneously sent through orthogonal polarization planes.

There is another strong reason in support of the proposed design. For

example, physicaly realization of a quaternion q = z1 + z2j, has been consid-

ered in the following way. It describes transmission of z1 from H-polarized

antenna and z2 through V-polarized antenna simultaneously, while j ensures

that these symbols are orthogonal because z2j lies in a plane perpendicular

to z1, fully respecting the horizontal and vertical polarization structure of a

DP antenna. According to the main idea as the signals z1 and z2j propagates

through space in the forms of orthogonal polarizations of an em-wave, they

suffer reflections, scattering and twists etc.. Although there can be substan-

tial flipping of original transmitted polarizations but somehow the effect of

orthogonal polarizations remains after reflections, scattering etc.. This also

makes sense, for example due to reflection, two orthogonally polarized waves

should have their counter parts in two reflected polarized waves, which are

different but at least orthogonally polarized. This can be achieved by simply

taking a quaternioinic channel h = h1 + h2j, where h2j serves the above

purpose and it also follows the same spirit as for q = z1+ z2j. Therefore, the

answer lies in the explicit form of qh and not in the channel h = h1 + h2j,

which seems to contain only two complex numbers. This characteristic of

quaternion designs for DP antennas gives them edge over almost all known

CODs and to the best of knowledge of the author it cannot be replicated

in the complex domain. Also note that in system model in Equation (4.10),

there is no coding/decoding delay while in Equation (4.11) there is a delay

at both ends. Besides the performance of Alamouti code, Equation (4.11)
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depends on maintaining spatial distance of at least half a wavelength at the

receiver side while ten wavelengths at the BS in order to achieve maximum

diversity gains [116]. Thus, considering the above points in favor of the phys-

ical interpretation of this model, it is very comparable to the Alamouti design

where two transmit 2 receive SP antennas are explouit both time and space

diversities. Here, a new form of diversity is exploited in combination with

space to show its impact on the diversity gains. The gains seem to increase

when time diversity is incorporated in to this system model with space and

polarization diversities.

Following above lines, it is now natural to propose a general quaternionic

system model for NT × 1−configuration of DP antennas which transmits

symbols in T−times slots

RT×1 = QT×NT
HNT×1 +NT×1, (4.14)

where H = [h1, h2, ..., hNT
], such that each entry is a quaternion ha =

ha1 + ha2j, for all a ∈ {1, 2, ..., NT}. The complex channel gains, ha1 and
ha2 incorporate the effects of CP scattering and the channel is assumed to
be Rayleigh fading, which implies that each element of channel gain matrix
is a complex Gaussian random variable (RV) with zero mean and unit vari-
ance. Moreover, the noise N = [n1, n2, ..., nT ], and nb = nb1+nb2j, such that
nb1, nb2 ∀ b = {1, 2, ..., T}, represent the entries of white noise as two dimen-
sional independent and identically distributed (i.i.d.) complex Gaussian RVs
with zero mean and identical variance per dimension. It is emphasized that
the above approach is different from previous attempts due to quaternionic
nature of channel. For clarity, a complex “quasi-code” is included [17],

Cq =

 z1 z2 z2 z1

−z∗2 z∗1 z∗1 −z∗2

 , (4.15)

constructed from QOD in Equation (4.8) in [110], where odd columns re-
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fer to transmission from one polarization plane and even columns contain

symbols that are transmitted through orthogonal polarization plane. It was

shown in [110] that an OSTPBC for 2× 1 DP unit performs better than an

Alamouti code for 2×1 single-polarized unit. Unfortunately, this is not a fair

comparison because the performance of 2×1 DP unit may be compared with

the performance of 4× 2 single-polarized unit as is also pointed out in [116].

Furthermore, the above quasi-code in Equation (4.15) does not provide a de-

coupled solution at the receiver end. On the other hand, the proposed model

is fully decoupled as shown below.

4.3.2 Linear Decoupled Solution

In all previous attempts, the ML-decoding rule norm is equivalent to the

minimum of either the norm R−CqH or its square for finding the transmit-

ted symbols where the channel H was assumed complex. [20] proposed that

a decoupled decoding can be obtained for any QOD even if the channel gain

matrix of a DP transmission system is not modeled by a single quaternion

gain. Later on, they corrected their decoding rule [122] and clarified that

the decoupled decoding can be achieved for certain QODs only [125]. The

main reason was assumption of complex nature of the channel. The follow-

ing theorem confirms a linear decoupled solution to our proposed model in

Equation (4.14).

Theorem 4.2. For a given system model in Equation (4.14), the ML-

decoding rule assumes a linear decoupled form

min
z
||R−QH||2 =min

z

(
tr(RQR) + λtr

(
HQH

)
−

2<
(
tr
(
RQQH

)))
. (4.16)
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Figure 4.1: BER vs. SNR performance of (1x1) QOD.

Proof. The proof is straight forward owing to the fact that ||R−QH||2 =

tr
(
(R−QH)Q(R−QH)

)
, which is easy to expand. The term tr(HQQQQH),

which was the main source of problems in all previous attempts reduces to

λtr(HQH), using orthogonality condition in Equation (4.1) and does not con-

tain the transmitted symbols. Consequently, there is only one term which is

linear and contain transmitted symbols. Hence proved.

Since the first two terms in Equation (4.16) are pure constants, there-

fore, the ML-decoding rule of minimizing the norm is equivalent to minimize

<
(
tr
(
RQQH

))
, where < denotes the real part of a complex number.
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Figure 4.2: BER vs. SNR performance of Q2,Q4,Q5 & CODs

4.4 Simulation Results

To evaluate the performance and diversity gains, QODs given in Equations

(4.7) − (4.10) are evaluated, corresponding to configurations 2 × 1, 3 × 1

and 1 × 1 of DP antennas, respectively. For simulations, quadrature phase

shift keying is used and equal power distribution is ensured per antenna per

polarization. The receivers are aware of the channel coefficients and uniform

white noise is added in each polarization.

From Figure 4.1, it is clear that the performance of Equation (4.10) for

a 1 × 1 DP system matches with that of an Alamouti design in Equation

(4.11) for 2 × 2 single-polarized with non cross-polar (NCP) components.
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However, it is worth pointing out that the Alamouti design exploits time

diversity to attain it whereas Equation (4.10) achieves the same performance

using polarization diversity. Contrary to what one would suspect that the

performance match between codes in Equation (4.10) and Equation (4.11)

with NCP components will occur in case of higher order configurations. The

QOD in Equation (4.8) for 2× 1 DP antennas that has complex rate 1, per-

forms significantly better in Figure 4.2, than its counter part which is an

Alamouti design for 4× 2 single-polarized antennas with NCP. An improve-

ment in the performance also comes from the fact that Equation (??) exploit

time diversity besides polarization gain. In Figure 4.2, we also include the

performance of QOD in Equation (4.7) which has its unique characteristic of

sending four complex symbols in two time slots. Lastly, polarization diversity

gain is attained by increasing the transmit antenna dimensions only by one

and it is clear from BER performance of Q5 that the gain will become more

pronounced in higher dimensions.

It can be seen that the QODs already present and constructed using dif-

ferent techniques are limited in terms of exploiting the polarization diversity

independent of the space and time diversities. The effect of space and time

diversities in the works [20, 109, 110] could not explain the transmission of

a pure QOD using a single DP antenna. They have represented the anal-

ogy between a single DP antennas and two single-polarized antennas. This

leaves a constraint environment towards freedom of the possible dimensions

that can be exploited to generate QODs. The quaternionic channel model

presented in this chapter is a completely novel concept that relates to the use

of DP antennas for the transmission of pure quaternions. It has been made

evident that this representation of exploiting the higher dimensions using

pure quaternions provides not only higher diversity gains, but this also re-
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sults in higher code rates. The remarkable contribution of these pure QODs

using DP antennas is the existence of linear and decoupled solution that re-

mained a major area of concern for researchers in past. Thus, the QODs

present in literature are developed on existing code designs in complex do-

main. However, this chapter defines the generation of QODs completely on

its own over a quaternionic channel that supports higher diversity gains due

to fully exploiting the polarization diversity.

4.5 Conclusions

The main purpose behind proposal of a new systems model based on quater-

nion algebra was to bring quaternions at the same level to the complex num-

bers in a natural way and it seems that one such instance to realize them is

the point-to-point communication between two DP antennas. Just like com-

plex numbers z = x+ iy, we believe that both quaternions q = z1 + z2j and

h = h1 + h2j, seem to offer us a natural and physically acceptable solution

which can lead to major breakthroughs in space-time coding. There is large

amount of work that needs to be done on each of the above points, however,

this was an attempt to provide one possible unified way in the form of pro-

posed system model based on quaternions and demonstrated the potential

it has to achieve them. The literature presents works that have developed

QODs from existing quasi or COD designs. DP antennas have also been

used [109], but this does not help in exploiting the polarization diversity in-

dependent of the space and time diversities. Thus, the subsequent benefits

have not been achieved to full. The proposals in this chapter addresses this

deficiency by presenting a channel model with pure QODS that has the ca-

pacity to independently exploit polarization diversity and the results support
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this claim [57].
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Chapter 5

Linear and Decoupled Decoders

for Dual-Polarized

Antenna-Based MIMO Systems

STBCs has long been studied using CODs and many varieties of codes, both

orthogonal and quasi-orthogonal, have been designed for different antenna

configurations and code rates. Recently, QODs have been used to design

STBCs that provide improved performance in terms of various design pa-

rameters. In this dissertation, we show that all QODs obtained from generic

iterative construction techniques based on Adams-Lax-Phillips approach have

linear and decoupled decoders which significantly reduce the computational

complexity at the receiver. The analysis is based on the quaternionic descrip-

tion of communication channels among DP antennas. The proposed solution

promises diversity gain with the quaternionic channel model and provides a

decoupled decoding solution with independence of the number of receive DP

antennas. A brief comparison is presented at the end to demonstrate the

effectiveness of quaternion designs in two DP antennas over available STBCs
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for four single-polarized antennas.

5.1 Introduction

Wireless communication through multiple antennas has been used extensively

in today’s telecommunication standards owing to the multiple benefits they

offer [1]. More specifically, in addition to providing high data rates through

spatial multiplexing, multiple antennas can be used effectively to combat

multi-path fading. There are numerous ways in which multiple antennas can

be used to provide diversity in wireless signals such as using time, frequency,

space and polarization, etc., and the underlying codes carry certain desir-

able properties such as orthogonality [20]. These properties can be exploited

effectively at the receiver side to obtain decoupled solutions with least com-

plexity. However, because of environmental scattering and imprecise antenna

spacing, the diversity gains start to diminish and also pose the problem of

coupled solutions, which are computationally expensive at the receiver [16].

With the advent of new generations of wireless communication systems

that demand very high data rates and ultra reliability, the paradigm is shift-

ing from simple MIMO to massive MIMO systems where the base station in

anticipated to be equipped with hundreds of antennas. Therefore, there is

a dire need to study other forms of diversity techniques with new antenna

designs that contain, for instance, both polarizations for transmissions and

require no extra bandwidth. Polarization diversity enables the simultane-

ous transmission and reception of information signals using the orthogonally

polarized antennas [20]. It has been shown that using a special mathemati-

cal tool of quaternion algebra, the transmission/reception/decoding of these

MIMO systems can be described effectively [117].
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The QODs are under rigorous research, for instance, see [20, 109, 110,

118, 122, 123, 126, 127]. However, an important construction technique in

these previous designs is that they were either extensions of CODs with some

necessary properties to be applicable as QODs, or they were constructed from

quasi-complex STBCs. However, despite the main motivation of exploring

polarization diversity in DP antennas using quaternions, these QODs focused

on construction of codes and their decoding.

The decoding of the codes presented previously seem to necessitate that

only square orthogonal designs can produce decoupled decoding. In [128], the

decoupled decoding solution for quasi-orthogonal codes has been presented

based on a wireless communication channel model which is derived from the

quaternionic channel representation. This model is restricted in terms of its

application to only the zero cross polar scattering environments. Also, it

restricts the number of DP antennas at the receiver. Both the above are

conservative conditions on a generic wireless communication arrangement.

The quaternionic channel proposed in [57] provides codes with optimal

rates exploiting polarization diversity along with space and time diversities

resulting in higher diversity gains. This research work contributes in provid-

ing iterative construction techniques for designing QODs. It is remarkable

to note that all generic iterative constructions of QODs result in decoupled

and linear decoders with enhanced throughput using the system model pro-

posed in [57], that forms the main result of this dissertation. Secondly, it is

identified that there are non-square designs which can have decoupled solu-

tions contrary to what has been believed that these fail to attain decoupled

decoding and only pair-wise decoding is possible for them. The proposed de-

sign enjoys freedom in exploiting the transmit and receive diversities with no

restriction on the antenna dimensions at both the transmitter and receiver
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ends. It fully exploits the polarization diversity using the cross polar scat-

tering components, making it more practical for current and future massive

MIMO wireless communication systems. A brief comparison of the perfor-

mance of QODs for two-input and single-output (TISO) system of DP an-

tennas is provided with a 4×2 multiple-input two-output (MITO) system of

single-polarized antennas. The former is shown to have key advantages over

the latter. Also, a detailed comparison of the proposed coding and decoding

design for the quasi-orthogonal STBCs is evaluated in light of the literature.

5.2 Realization of Quaternion Designs

The simultaneous transmission of symbols through a DP antenna can be

modeled through a unified quaternion q = z1+z2j, such that symbols z1 and

z2 are transmitted instantaneously through TH (horizontal) and TV (verti-

cal) polarizations, respectively. This line of approach is resurrected in [57] for

single-input single-output (SISO) system by implementing an idea that the

orthogonal polarization states can be represented as quaternions [19], thereby

attaining polarization diversity gain. Unfortunately, for SISO systems the

gains from different form of diversities are less apparent and becomes profi-

cient for large number of antennas in MIMO systems. For such systems, it

is necessary to develop an iterative approach so that higher order quaternion

designs can be generated, which forms the main topic of this paper.

It is assumed that each quaternion in a QOD comprises of two complex

symbols which are obtained from standard modulation schemes, e.g., QPSK.

In order to exploit diversity gains from space and time, the OSTPBCs has

been defined in the quaternion domain, as in Equation 5.10.

Unlike a SISO system of single-polarized antennas, a SISO system be-
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tween DP antennas has several important features to offer. For example,

for one DP antenna, a QOD Q = [q] where qQq = 1, has quaternionic rate

1, transmitting one quaternion in one time slot. This rate corresponds to a

design with rate 2 of a TITO (2× 2) system of single-polarized antennas, for

which we already know that there exist no such “orthogonal" design which

has rate more than 1. A design with rate more than 1 is a quasi-design which

fails to attain a linear and decoupled decoder. However, as we shall see in

the subsequent section that the above QOD of a SISO system has optimal

decoding solution.

In [57], there were three QODs considered (two of order 2×2 and one QOD

with order 4× 3) which were based on non-iterative construction techniques.

It is demonstrated that higher order QODs can easily be generated iteratively

and have fast, linear, and decoupled decoders. Indeed, [16] proposed three

generic iterative construction techniques, namely Adams-Lax-Phillips, Józe-

fiak, and Wolfe constructions. A general COD is designed for l + 1 symbols

embedded in a square matrix of order 2l such that

A =

G2l−1(z1, z2, . . . , zl) zl+1I2l−1

−z∗l+1I2l−1 GH
2l−1(z1, z2, . . . , zl)

 , (5.1)

where l = {1, 2, 3 . . . } and G2l−1(z1, z2, . . . , zl) represents a COD of order

2l−1 × 2l−1 defined on symbols {z1, z2, . . . , zl}. For example, for l = 1,

G1(z1) = [z1].

It is now easy to generate square QODs using above mechanism [121]. We

briefly indicate the steps involved in generating a hierarchy of such designs

along with the main proof. In particular, by systematically swapping columns

1, 2, . . . , Nt/2 of matrixA with (Nt/2)+1, (Nt/2)+2, . . . , Nt columns, respec-

tively, an equivalent matrix B, is generated where Nt represents the number

of antennas of COD on which permutation is performed. This gives rise to
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the following result where the redundant argument in G has been omitted

for the sake of simplicity.

Theorem 5.1. For a given COD A in Equation (5.1), a complex amicable

and symmetric-paired design can be constructed such that the following real-

ization

Q2l(z1, z2, .., zl+1) = A+Bj =

 G2l−1 + zl+1I2l−1j zl+1I2l−1 +G2l−1j

−z∗l+1I2l−1 +GH
2l−1j GH

2l−1 − z∗l+1I2l−1j

 , (5.2)

provides a QOD of dimension 2l × 2l with complex rate (l + 1)/2l.

Proof. In order to prove the quaternion orthogonality in Equation (3.4), it

was noticed that QQ
2l

= AH − jBH , owing to the fact that both A and B

are CODs. Hence, QQ
2l
Q2l = (AH − jBH)(A + Bj), in which the outer

product merely yields a Frobenius norm of complex numbers z1, z2, . . . , zl

multiplied by an identity matrix. However, the inner product AHBj−jBHA

is identically equal to zero because AHB = BHA. This follows from the

construction of B which is obtained from A upon permutation of columns.

For completeness, we delve on another iterative construction technique

as it also has decoupled decoding. It is, however, different from the above

approach for there is no need of necessarily generating B by permutation.

Lemma 5.1. For a given square COD G2l−1(z1, z2, .., zl+1), the matrix

Q21×2l−1(z1, z2, .., zl+1) = G2l−1(z1, z2, . . . , zl) + zl+1I2l−1j

−z∗l+1I2l−1 +GH
2l−1(z1, z2, . . . , zl)j

 (5.3)
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provides a quaternion design of order 2l × 2l−1, with rate (l + 1)/2l.

Proof. The Equation (5.10) for above code is simplified into (GH + z∗I)(G+

zI) + (−zI +G)(−z∗I +GH). As before, the outer products of both terms

result into Frobenius norm due to the orthogonality of G. The inner prod-

uct is GHz + z∗G − zGH −Gz∗, which is identically equal to zero due to

commutativity of the complex numbers.

Note that due to identity matrix in the term zl+1I2l−1j, there will be at

least one element in the first time slot which does not contain j. Hence,

this construction lacks in providing non-zero QODs. Codes with non-zero

entries ensure fixed average power codeword by maintaining reduced peak

power transmission from every antenna. This results in favorably low peak-

to-average power ratio (PAPR) and diminishes the hardware implications to

switch antennas on and off while transmitting a non-zero and zero, respec-

tively [129]. An iterative technique without such a drawback is considered

below.

Lemma 5.2 For two generalized CODs G2l(z1, z2, . . . , zl+1) and

L2l(zl+2, zl+3, .., z2l+2) with same structure, which are constructed on the COD

formulation, as shwon in Equation (5.1), it follows that

GH
2lL2l + LH2lG2l = G2lL

H
2l + L2lG

H
2l = γI2l , (5.4)

where γ = 2<
(∑l+1

k=1 z
∗
kzl+1+k

)
.

It is important to mention that the above lemma does not hold true for

two general CODs. For example, two Alamouti codes with different struc-

tures

z1 z2

z∗2 −z∗1

 and

 z3 z4

−z∗4 z∗3

, fail to satisfy it while they can be used

effectively in generating a consistent COD of the form, as in Equation (5.1).
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By using the above lemma, the following theorem is defined which can be

proved in a similar way.

Theorem 5.2. For generalized CODs G2l−1(z1, z2, . . . ., zl) and

L2l−1(z1+2, z2, . . . , z2l+2), a symmetric-paired design,

Q2l+1×2l(z1, . . . , z2(l+1)) =

G2l + L2lj ,

L2l +G2lj

 , (5.5)

is a QOD of dimension 2l+1 × 2l with complex rate (l + 1)/2l.

QODs are evaluated for the proposed construction technique for (2× 1),

(4× 1) and (8× 1) DP antenna arrangements in subsequent sections.

5.3 Higher Order Designs For DP Antennas

5.3.1 Designs for (2× 1)−DP Antennas

To elaborate the generalized construction technique, a QOD of rate 1 is

presented, where the COD A contains symbols z1 and z2, while the COD

B contains independent symbols z3 and z4, respectively. Using Equation

(5.5), the following symmetric-paired design of order 4 × 2 is obtained with

a complex code rate of 1,

Q1 =


z1 + z3j z2 + z4j

z∗2 + z∗4j −z∗1 − z∗3j

z3 + z1j z4 + z2j

z∗4 + z∗2j −z∗3 − z∗1j

 , (5.6)

where l = 1, G1 = [z1], and L1 = [z3] from Equation (5.5). Note that in

the above code, both ends of a DP antenna will be used at each time slot.
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Therefore, the QODs obtained through this procedure will contain non-zero

complex symbols in each time slot.

Following example is considered for illustration. Unlike [121], this design

is used in the proposed system model and show that it has decoupled decoding

without the need of applying projection operator.

Distinctiveness of QODs

An interesting property of QODs which distinguishes them from CODs is that

there exists QODs of complex rate greater than one, which have decoupled

decoders. For instance, the following QOD has code rate 2 and is shown to

posses decoupled decoder

Q2 =

z1 + z2j z4 + z3j

z∗2 − z∗1j −z∗3 + z∗4j

 . (5.7)

The main reason behind is that the Alamouti code is proposed for single-

polarized antennas while QODs are developed for DP antennas. Similarly,

there is a QOD of rate 1 which is given as

Q3 =

 z1 + z2j j(z1 + z2j)

i(z1 + z2j) −k(z1 + z2j),

 . (5.8)

which provides decoupled decoding.

5.3.2 Design for (4× 1)−DP Antennas

An Alamouti code G2 =

 z1 z2

−z∗2 z∗1

 is selected. Then using Equation (5.1),

a COD of order 4 is obtained. Through permutations, the matrix B is gener-

ated using Equation (5.5) and finally the following QOD for 4 DP antennas
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Figure 5.1: TISO DP antenna configuration exploiting space, time and polariza-
tion diversities.

with rate 3/4 is obtained.

Q4 =


z1 + z3j z2 z3 + z1j z2j

−z∗2 z∗1 + z3j −z∗2j z3 + z∗1j

−z∗3 + z∗1j −z2j z∗1 − z∗3j −z2
z∗2j −z∗3 + z1j z∗2 z1 − z∗3j

 .

In comparison to the last three QODs, the above QOD suffers one drawback

that in each time slot two polarizations (H or V ) of at least two DP antennas

needs to be switched, which results in a high peak-to-average power ratio and
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Q5 =



z1 + z4j z2 z3 0 z4 + z1j z2j z3j 0
z∗2 −z∗1 + z4j 0 z3 z∗2j z4 − z∗1j 0 z3j
z∗3 0 z∗1 + z4j z2 z∗3j 0 z4 + z1j z2j
0 z∗3 z∗2 −z1 + z4j 0 z∗3j z∗2j z4 − z1j

−z∗4 + z∗1j z2j z3j 0 z∗1 − z∗4j z2 z3 0
z∗2j −z∗4 − z1j 0 z3j z∗2 −z1 − z∗4j 0 z3
z∗3j 0 −z∗4 + z1j z2j z∗3 0 z1 − z∗4j z2
0 z∗3j z∗2j −z∗4 − z∗1j 0 z∗3 z∗2 −z∗1 − z∗4j


.

(5.10)

is not practically desirable.

5.3.3 Design for (8× 1)−DP Antennas

A maximal rate square COD of order 22 = 4 is given by

G4 =


z1 z2 z3 0

z∗2 −z∗1 0 z3

z∗3 0 z∗1 z2

0 z∗3 z∗2 −z1

 , (5.9)

as a seed matrix to generate the required QOD using Equation (5.5). Thus

for a massive MIMO comprising of an 8× 1 system, a QOD which has code

rate 1/2 and is given in Equation (5.10).

5.4 System Model and Decoding

A TISO of DP antennas has been considered where it is necessary to empha-

size the role of quaternions which is more recognizable in this case, therefore,

it is given as

R =

r1
r2

 =

q1 q2

q3 q4

h1
h2

+

n1

n2

 , (5.11)
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where each element in the above construction is a quaternion. This configura-

tion is represented diagrammatically in 5.1. It is clear that each DP antenna

consists of both horizontal and vertical polarizations that are completely or-

thogonal to each other. Considering the transmission of a (2x2) code, the

first column entries are representing the quaternion symbol being transmitted

through the horizontal and vertical polarization of the first DP antenna at

the transmitter, i.e. TX1, while the second column represent the quaternion

symbol transmitted through the horizontal and vertical polarizations of the

second DP antenna, TX2. The spacing between these two DP antennas at

the transmitter introduces the space diversity. The second row of the code

block represents the second time slot that incorporates the time diversity.

The beneficial aspect of this design is its ability to exploit the polarization

diversity independent of the space and time diversities. The separation de-

fined as orthogonality between the horizontal and vertical polarizations in a

single DP antenna exploits the polarization diversity by ensuring that the

signals transmitted remain uncorrelated and remain in orthogonal polariza-

tions even if they encounter scattering, reflections, etc. during transmission.

Thus, this supports the idea presented in Chapter 4 that QODs designed

using pure quaternion algebra are able to exploit all the polarization diver-

sity fully independent of the space and time diversities when used with DP

antennas.

Through first antenna in the above TISO system, the transmission of a

pair of two complex symbols is encoded in q1 and another pair in q3. This

indicates that the above QOD exploits time and space diversities along with

polarization diversity, as shown in Figure 5.1. It is worth pointing out that

each quaternionic product, e.g., qahb contains a crucial information about the

nature of quaternion domain. If it is decomposed for a general quaternionic
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product then qa1hb1 − qa2hb2 + j(qa1hb2 + qa2hb1) is obtained, where qa =

qa1 + jqa2 and hb = hb1 + jhb2. Therefore, four complex channel gains for

each antenna in a 2× 1 system are obtained. Subsequently, a system model

for a MISO system of NT × 1 DP antennas is given as,

Subsequently, a system model for a MIMO system of dual-polarized an-

tennas can be constructed in the same way for such a system with Nt ×Nr

dual-polarized antennas

RT×Nr = QT×NtHNt×Nr +NT×Nr , (5.12)

In Equation (5.12), symbols are transmitted in T−times slots where

H = [h1, h2, . . . , hNT
], such that each entry is a quaternion ha = ha1 +

ha2j, for all a ∈ {1, 2, . . . , NT}. The complex channel gains, ha1 and ha2

incorporate the effects of cross polar scattering and the channel is assumed

to be Rayleigh fading, which implies that each element of channel gain matrix

is a complex Gaussian RV with zero mean and unit variance. Moreover, the

noise N = [n1, n2, . . . , nT ], and nb = nb1 + nb2j, such that nb1, nb2 ∀ b =

{1, 2, . . . , T}, represent the entries of white noise as two dimensional i.i.d.

complex Gaussian RVs with zero mean and identical variance per dimension.

Based on the system model given in Equation (5.12), the following the-

orem confirms a linear decoupled solution at the receiver for all QODs con-

structed in this chapter. It was previously proved for non-iterative QODs

in [57] but its validity is now confirmed for all QODs obtained in previous

sections in this chapter.

Theorem 5.3. For a given system model in Equation (5.12), the ML-
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decoding rule assumes a linear decoupled form

min
z
||R−QH||2 =min

z

(
tr(RQR) + λtr

(
HQH

)
− 2<

(
tr
(
RQQH

)))
.

(5.13)

There are two main advantages of the above ML-decoding rule. The pres-

ence of QOD, Q, in the term <
(
tr
(
RQQH

))
, contributes only linear terms of

complex symbols. Secondly, it significantly reduces the computational load

at the receiver for the reason that the term <
(
tr
(
RQQH

))
, can easily be

expressed without involving matrices at all which may be cumbersome for

large MIMO systems.

It is emphasized here that for all QODs obtained in the previous sec-

tion, the decoupled decoding rule, similar to Corollary 5.1, can be derived

explicitly. As an illustration of the above result, we choose among them the

QODs given in Equations (5.6) and (5.7) and demonstrate that the above

ML-decoding rule is both linear and decoupled.

Corollary 5.1. The ML-decoding rule (5.13) for QOD given in Equation

(5.6), reduces to

− 2min
z1
<(rq1z1h1 − r

q
2z

∗
1h2 + rq3z1h1j − r

q
4z

∗
1h

∗
2j) ,

− 2min
z2
<(rq1z2h2 + rq2z

∗
2h1 + rq3z2h

∗
2j + rq4z

∗
2h

∗
1j) ,

− 2min
z3
<(rq1z3h∗1j − r

q
2z

∗
3h

∗
2j + rq3z3h1 − r

q
4z

∗
3h2) ,

− 2min
z4
<(rq1z4h∗2j + rq2z

∗
4h

∗
1j + rq3z4h2 + rq4z

∗
4h1) , (5.14)

where R = [r1 r2 r3 r4]
T , is the received vector with each element is a quater-

nion and h1 = h11 + h12j and h2 = h21 + h22j.
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The ML-decoding rule (5.13) for QOD given in Equation (5.10), reduces to

− 2min
z1
<(rq1z1h1 + rq1z1h

∗
5j − r

q
2z

∗
1h2 − r

q
2z

∗
1h

∗
6j + rq3z

∗
1h3 − r

q
3z

∗
1h

∗
7j − r

q
4z1h4

− rq4z1h∗3j + rq5z
∗
1h

∗
1j + rq5z

∗
1h5 − r

q
6z1h

∗
2j − r

q
6z1h6 + rq7z1h

∗
3j + rq7z1h7 − r

q
8z

∗
1h

∗
4j

− rq8z∗1h8) ,
− 2min

z2
<(rq1z2h2 + rq1z2h

∗
6j + rq2z

∗
2h1 + rq2z

∗
2h

∗
5j + rq3z2h4 + rq3z2h

∗
8j + rq4z

∗
2h3

+ rq4z
∗
2h

∗
7j + rq5z2h

∗
2j + rq5z2h6 + rq6z

∗
2h

∗
1j + rq6z

∗
2h5 + rq7z2h

∗
4j + rq7z2h8 + rq8z

∗
2h

∗
3j

+ rq8z
∗
2h7) ,

− 2min
z3
<(rq1z3h3 + rq1z3h

∗
7j + rq2z3h4 + rq2z3h

∗
8j + rq3z

∗
3h1 + rq3z

∗
3h

∗
5j + rq4z

∗
3h2

+ rq4z
∗
3h

∗
6j + rq5z3h

∗
3j + rq5z3h7 + rq6z3h

∗
4j + rq6z3h8 + rq7z

∗
3h

∗
1j + rq7z

∗
3h5 + rq8z

∗
3h

∗
2j

+ rq8z
∗
3h6) ,

− 2min
z4
<(rq1z4h∗1j + rq1z4h5 + rq2z4h

∗
2j + rq2z4h6 + rq3z4h

∗
3j + rq3z4h7 + rq4z4h

∗
4j

+ rq4z4h8 − r
q
5z

∗
4h1 − r

q
5z

∗
4h

∗
5j − r

q
6z

∗
4h2 − r

q
6z

∗
4h

∗
6j − r

q
7z

∗
4h3 − r

q
7z

∗
4h

∗
7j − r

q
8z

∗
4h4

− rq8z∗4h∗8j) ,
(5.15)

Note that there are four complex channel gains between a TISO system

of DP antennas, as shown in Figure 5.1. As this system is equivalent to a

MIMO 4 × 2 system of single-polarized antennas, therefore, it may appear

that it should have eight channel gains in total with two for each link. How-

ever, in the proposed model each quaternionic product results in the same

number of channel gains. The receiver now computes the decision metric

minz ||R−QH||2, which involves matrices. On the other hand, an optimal

decoder, as shown in Equation (5.13), is also used to receive signal that sig-

nificantly reduces total time consumed. In the end, the decoder for QOD in

Equation (5.10) is given.

Corollary 5.2. The ML-decoding rule (5.13) for QOD in Equation (5.10)

is given in Equation (5.15) where R = [r1 r2 r3 r4 r5 r6 r7 r8]
T , is the received

vector with each element is a quaternion and hi = hi1 + hi2j, i = 1, 2, ...8.
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Figure 5.2: BER vs. SNR performance of QODs Q1,Q2 and Q3.

5.5 Key Aspects of QODs under Quaternion

Channel

5.5.1 Comparison with Benchmark Codes

DP antennas can exploit the space, time and polarization diversities suit-

ably and the designed codes based on QODs are used to serve this purpose.

The BER performance of the codes Q1,Q2 and Q3 is given in Figure 5.2.

Notice that the designs Q1 and Q3 have overlapping BER curves, attaining

same diversity gains, however, Q3 has a relatively better throughput than

Q1. A consolidated comparison of QODs is performed, developed for two
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Figure 5.3: BER vs. SNR performance of QODs CYT1 and CYT2.

DP antennas against conventional STBCs designed for four single-polarized

antennas to indicate the major differences. For four transmit single-polarized

antennas, the authors in [130] and [131] used amicable designs to construct

minimum decoding quasi STBCs that essentially require the products AHB

and BHA to be equal where A and B are amicable STBCs. This drastically

reduces the code rate which in our designs remain stable as they require only

the property of being symmetric property. In particular, for four and eight

transmit antennas, there are two “square" STBCs constructed (Equation (20)

in [130]), which have rates 1 and 3/4, respectively. Their STBCs are denoted

with CYT given as
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CYT1 =


z1 z2 −z3 −z4
−z∗2 z∗1 −z∗4 z∗3

z3 z4 z1 z2

z∗4 −z∗3 −z∗2 z∗1

 , (5.16)

where z1 = cR2 + jcI3, z2 = cR2 + jcI4, z3 = cR3 + jcI1 and z4 = cR4 + jcI1, where

j refers to imaginary unit. Previously, the authors in [131] obtained the

following square OSTBC (Equation (11) in [131])

CYT2 =


x∗1 − x2 x∗1 + x2 x∗3 −x∗3
jx1 + jx∗2 −jx1 + jx∗2 jx∗3 jx∗3

−x3 x3 x∗1 − x∗2 x∗1 + x∗2

−jx3 −jx3 jx1 + jx2 −jx1 + jx2

, (5.17)

which was shown to have significant performance edges over previously known

codes proposed in [102] and [132]. Because of the orthogonality condition,

the above code CYT2 has less code rate than quasi code CYT1. Figure

5.3 provides a comparison of the analog of CYT1 and CYT2 in quaternion

domain where the later results in improved performance, i.e., a 5dB gain in

SNR at 10−5 BER. These codes do not have decoupled decoders in complex

domain while a decoder has been presented in quaternion domain which

ensures decoupling. On the other hand, the state-of-art linear dispersion

STBCs are proposed for four transmit antennas in [133] of maximal rate 1

when the distance between transmit antennas satisfies a physical constraint.

For a brief fair comparison of QODs with benchmark codes, we con-

struct the complex analogues of QODs by applying operator C such that

C(z1 + z2j) = [z1 z2]. In this way, we obtain four equivalent quasi-codes (yet

quaternion orthogonal) for four transmit single-polarized antennas given as
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Figure 5.4: BER vs. SNR performance of QODs CQ1 ,CQ2 ,CQ3 and CQ4 .

CQ1 =


z1 z3 z2 z4

z∗2 z∗4 −z∗1 −z∗3
z3 z1 z4 z2

z∗4 z∗2 −z∗3 −z∗1

 , (5.18)

CQ2 =

x3 + x4i x0 + x2i x3 + x4i x1 + x2i

x3 + x4i −x1 + x2i −x3 − x4i x0 − x2i

, (5.19)

CQ3 =

z1 z2 z3 z4

z∗2 −z∗1 −z∗4 z∗3

, (5.20)

CQ4 =

 z1 z2 z∗1 −z∗2
iz1 iz2 iz∗2 −iz∗1

, (5.21)
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Figure 5.4 shows the simulation results of these codes which can be com-

pared with CYT1 or CYT2. Subsequently, a detailed comparative analysis

has been carried out, which proves that the designs developed in the quater-

nion domain have performance edge at many fronts such as computational

complexity, improved throughput, exploitation of polarization diversity, de-

coding delays and linear decoupled decoding, etc.

5.5.2 Computational Complexity

The proposed design eliminates the dependence of the decoder on ζ, i.e.,

the number of unique transmitted symbols. This has been the case with

coupled decoding which arises in the case of CYT1. In terms of the float-

ing point calculations, the computational complexity for N number of DP

transmit antennas reduces to O(4(N)(T )(2)) from O(4ζ(N)(T )(2)) of the

coupled decoder, where T represents the time slots required to transmit a

single block of code. For the code in Equation (5.8), the proposed decoupled

decoder executes 256 number of floating point operations (FLOPs), resulting

in an increase of 98.4% computational efficiency. This efficiency is greatly

enhanced as the antenna dimensions increase. Thus, the decoupled decoding

of the quasi-orthogonal STBCs corresponding to Q1,Q2,Q3 and Q4 with the

proposed decoder using the quaternionic channel can be easily achieved while

the coupled ML decoder would have failed completely.

Here it is very important to emphasize the impact of increased number

of antenna elements on the computational complexity of this proposal. This

is also critical as the future generation of wireless communication aims to in-

tegrate hundreds of antennas and this demands the evaluation of the designs

to practical considerations. It is already presented that the computational

complexity is entirely dependent on the number of transmit antennas and
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the number of timeslots used to transmit a single code block. Thus, the

more the number of antenna elements are added to the system, the compu-

tational complexity seem to rise. For example, the computational complexity

of the proposed design for T timeslots will result drastically demanding extra

processing time and incurring more delays.

In Table 5.1, the main points has been summarized which play a dom-

inant role in the quaternion domain when employed for DP antennas. A

comparison has been presented between the quaternion designs and the com-

plex designs. These designs are evaluated in terms of different characteristics

of the wireless communication system. A valuable feature that is visible is

the increased code rates with the use of quaternionic channel model for the

orthogonal codes. This is traded with the coding and decoding delays in

the quaternionic channel-based system model incurred at both the transmit-

ter and receiver ends to generate quaternion codes and then decode them

to the complex symbols, respectively. Quaternion channel inherently embeds

orthogonality due to the use of pure quaternions and DP antennas. This pro-

vides linear and decoupled decoding at the receiver end. This has been seen

possible due to the quaternion channel exploiting the polarization diversity

independently in addition to the space and time diversities. This remained

hidden for long unless dual-polarized antennas were used for wireless com-

munication systems using space time coding [20,109,110].

5.5.3 Number of Receive Antennas

The physical implementation of the design in [128] is limited with the use of

even number of DP antennas at the receiver. For massive MIMO systems,

this is space and cost inefficient with restrictions on the freedom of diversity

at the receiver end. The proposed model works for any number of receive
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Table 5.1: Significant features of the quaternion domain and their comparison
with their counter codes in complex domain.

Complex Designs Quaternion Designs
CYT1 CYT2 Q1 Q2 Q3 Q4

Type Quasi Orthogonal Orthogonal Orthogonal Orthogonal Orthogonal
Code Rates 1 3/4 1 2 1 3/4
Coding/Decoding Delay X X × × × ×
Decoupled Decoder × × X X X X
Space & Time Diversities X X X X X X
Polarization Diversity × × X X X X

-5 0 5 10 15 20 25

SNR(dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

C
Q3

 Complex (2x2)

C
Q3

 Quaternion (2x1)

Figure 5.5: BER vs. SNR performance comparison of CQ3 for decoupled decoder
in [128] and the quaternionic channel based decoder.

DP antennas, NR, i.e., (NT × 1), . . . , (NT ×NR); NR ≥ 1.

5.5.4 Diversity Gain

The diversity gain of CQ3 is 3dB at a BER of 10−5 in comparison to the di-

versity gain achieved in [128] using the complex representation of the quater-
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Figure 5.6: BER vs. SNR performance of CQ3 for one and two receive DP
antennas

nionic channel with two transmit and two receive DP antennas, as shown

in Figure 5.5. This gain approaches 13dB at the same bit error rate if the

antenna dimensions are matched at both the transmitter and receiver ends,

as evident in Figure 5.6. Thus, the best exploitation of polarization diversity

is executed using the cross polar as well as the polar components without

any dependence on the number of receive antennas.

5.5.5 Cross-Polar Scattering

Scattering and reflections result in polarization variations where cross po-

lar scattering is natural. The orthogonal quaternion codes are decomposed
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into quasi-orthogonal STBCS in [128] to provide a decoupled decoding so-

lution. Yet, this model has constraints to have zero cross polar scattering

environment, a limiting scenario in real communication systems. Such an

exercise appears redundant as decoupled decoding solution for DP antennas

based on a generalized quaternionic channel model has already been detailed

in [57], which considers both the polar as well as non-cross polar scattering

and provides linear decoupled decoding solution for quasi-orthogonal STBCs.

This work presents a generalized decoupled decoding solution for the

quasi-orthogonal STBCs using the quaternionic channel model irrespective of

any constraints regarding the cross polar scattering, the number of received

DP antennas and coding/decoding delays. This design provides a decoupled

decoding solution for any number of transmit and receive DP antennas.

5.6 Conclusion

This chapter presented an evaluation of the conditions employed on the con-

struction of QODs that achieve better diversity gains by exploiting space,

time and polarization diversities using quaternion algebra. The main contri-

butions of this work are:

• In the presence of fully quaternion-valued channel model, design of

linear and decoupled decoder for QODs based on Adam-Lax-Phillips

approach.

• Iterative construction techniques for QODs.

• Extension to more robust MIMO systems considering freedom in trans-

mit as well as receive diversities.
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Quaternionic channel provides decoupled decoding solutions using quater-

nion algebra and presents iterative construction techniques for QODs. A re-

markable contribution of this work [58] is linear decoupled solution of codes

including square as well as non-square designs. This was not present before.

Additionally, the solution presented here is generalized for both polar as well

as cross polar scattering environments and is independent of the number of

receive DP antennas.
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Chapter 6

Quaternionic Channel-based

Modulation For DP Antennas

STBCs have been studied to exploit the spatial and temporal diversities in

wireless systems. OSTPBCs designed using the quaternion algebra promise

gains in terms of higher data rates, diversity and spectral efficiency. In this

context, quaternion modulation has been proposed using the DP antennas

to generate efficient selection of the polarization and optimal decoding at

the receiver end. In this thesis, the quaternion modulation technique has

been evaluated considering the quaternionic channel using the DP antennas.

The results show promising diversity gains with benefits in terms of spectral

efficiency and data rates. An extension of this scheme for higher number of

symbols and higher DP antenna dimensions has also been presented. The

proposal includes linear decoupled decoding of the QODs at the receiver

end where the complexity stays independent of the number of transmitted

symbols. The design of the quaternion modulation using the quaternionic

channel fully exploits the polarization diversity in addition to unfolding its

applicability for future massive MIMO wireless systems.
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6.1 Introduction

Design of orthogonal codes in higher dimensions has been investigated and

proven to have beneficial results on the diversity as well as spectral efficiency

and code rates [1,16,20]. The multi-dimensional orthogonal codes have been

successful in addressing the limitations in capacity by exploiting different

forms of diversity, i.e., space, time and polarization using the DP antennas

[109, 110, 116]. QODs have been successful in targeting higher data rates

and reduced receiver complexity [120]. In [57], pure quaternion codes have

been designed where a unique construction for quaternionic channel has been

exploited. This supports the importance of utilizing higher dimensions like

quaternions and integrating them with the theory of DP antennas to achieve

higher data rate codes with greater diversity gain, demanded for the massive

MIMO systems.

Modulation in the quaternion domain has been used to achieve better

performance, yet the design has hardware complexities and remains ineffi-

cient when combined with the DP antennas, [134]. In [118], a quaternion

modulation scheme, QMod, uses the notion of quaternions and DP antennas

to gain the benefits of spectral efficiency, diversity and data rate. The au-

thors claimed that the diversity gain is maximized with the presented channel

model for the DP antennas using quaternions due to the simultaneous use of

both the polarizations at a single DP antenna. The four states of the polar-

izations of the DP antenna, i.e., V V , V H, HV and HH, have been used to

generate two extra bits of data to be transmitted, where V
(
0
)
represents the

vertical polarization and H
(
1
)
represents the horizontal polarization of the

DP antenna. However, this diversity gain obtained using the proposed mod-

ulation scheme is limited as it does not fully exploit the benefits of combining

the polarization diversity with time and space diversities using the quater-
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nions due to its dependence on the cross polar scattering effects. In [57], a

quaternionic channel model is presented using the DP antennas which ex-

ploits time, space and polarization diversities with the QODs. This model

represents the quaternion structure fully embedded into the codes as well

as the wireless channel, where (1 × 1) QOD performs similar to the (2 × 2)

Alamouti code with zero cross-polar components. This is possible due to the

coupling with ‘j’
(
where j is the orthogonality in quaternion domain between

the two complex symbols
)
, which inherently brings the effect of cross-polar

scattering. Furthermore, in [57], it has been explored that in higher dimen-

sions, e.g., (2×1) or higher, the diversity gain with the quaternionic channel

model is significantly high in comparison to the unipolarized schemes of the

same order with efficiency in terms of reduced number of timeslots required

to transmit the same number of complex symbols. Using this quaternionic

channel model and the QODs with DP antennas, the modulation scheme

presented in [118] provides promising results.

This chapter presents the design of a quaternion modulation using the

quaternionic channel model developed in [57]. In [118], the authors have ex-

ploited the use of cross-polar scattering to achieve maximum diversity gains

when the isolation across the two polarizations of the DP antenna is maxi-

mum. Thus, for the design of OSTPBCs, the presented quaternion modula-

tion design using the quaternionic channel is independent of the cross-polar

scattering effects which fully exploits polarization using the DP antennas in

addition to space and time diversities to achieve maximum performance. A

further extension of this design to higher dimension has been presented which

makes it a valuable application for next generation massive multiple-input

multiple-output (MIMO) networks.
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6.2 System Model

Consider a MIMO transmission system with N DP antennas at the transmit-

ter. The receiver is equipped with a single DP antenna. Both the transmitter

and receiver perform data transmission using the QODs. For a
(
1 × 1

)
DP

antenna configuration, the discrete-time input-output relation over a block of

data bits for Rician fading channel is given by the received signal r = qh+n,

where n = n1 + n2j is the AWGN, which is two dimensional i.i.d. com-

plex Gaussian random variables with zero mean and identical variance per

dimension and h is the channel given as

h =

√
1

K + 1
(h1 + h2j) +

√
K

K + 1
(1 + 1j), (6.1)

which is a combination of pure Rayleigh
(
K = 0

)
and AWGN

(
K = ∞

)
channels.

For
(
N × 1

)
antenna dimension, the received signal R can be written as

R = QH+N = Q


h(1)

...

h(N)

+


n(1)

...

n(N)

 , (6.2)

where h(m), n(m) ∈ Q, m =
[
1, 2, . . . N

]
. In Equation (6.2), H is the quater-

nion channel matrix, with coefficients representing gains between each pair

of transmit and receive DP antenna for a Rician fading channel, with infinite

cross-polar isolation
(
χ−1
)
and cross-polar discrimination

(
α−1
)
[116]. N is

the quaternion noise matrix and Q is a quaternion code matrix containing

transmitted symbols.
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Figure 6.1: Quaternion modulation bit patterns and constellation, for B = 4

6.3 Quaternion Modulation using Quaternionic

Channel

In [118], the quaternion modulation scheme, QMod, uses the notion of quater-

nions and DP antennas to gain the benefits of diversity and data rate. Among

the two parts of the transmit data block, one is the information block which

is transmitted using the standard modulation schemes while the other repre-

sents one of the two polarizations, H or V , that is to be used for transmitting

the data symbols.

The total number of data bits per symbol are represented as B, where

B is even, which is divided into four parts, as in [118]. The first and the

(B
2
+1)th bit are used to select the polarization state V/H of the DP antenna
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while the rest of the bits are considered as information bits. If the first

and the (B
2
+ 1)th bits turn out to be same

(
e.g. 00 or 11

)
, the modulation

scheme similar to the one presented in [134] is followed, where one of the two

polarizations is selected to transmit all of the information bits. For the first

and (B
2
+ 1)th bits being different, the first half of the information bits are

modulated using the amplitude-shift keying (ASK) and transmitted through

the real part of the complex symbol sent through one of the polarizations of

the DP antenna while the second half of the information bits is transmitted

as an ASK symbol through the imaginary part of the complex symbol sent

through the other polarization of the DP antenna.

As an example, for B = 4, four bits are available to be transmitted

per quaternion symbol, i.e.,
[
b1b2b3b4

]
, as shown in Fig. 1. Bits b1 and b3

selects the polarization state whereas the remaining bits, i.e. b2 and b4, are

the information bits. For one DP antenna at the transmitter and receiver,

i.e., (1x1) DP antenna configuration, the transmit data is represented as a

quaternion, q1, which comprises of two complex symbols z1 = b1 + b2j and

z2 = b3 + b4j and is given as

q1 = z1 + z2j. (6.3)

The first bit, b1, determines that the BPSK modulated symbol using the

second information bit, b1, is transmitted through the real or jth dimension of

the quaternion while the third bit, b3, determines that the BPSK modulated

symbol using the fourth information bit, b4, is transmitted through ith or kth

dimension of the quaternion. Thus, in comparison to [134], two additional

bits of data are obtained which increases the modulated transmission rate.

The proposed model is a generalized solution for quaternion modulation

for any number of transmit DP antennas, where (2 × 1) DP antenna con-
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figuration is explained. For (2 × 1) DP antenna configuration, the received

signal R can be written as,

R = Q

h(1)
h(2)

+

n(1)

n(2)

 . (6.4)

Two QODs, Q2 and Q3, are considered from [57] and their performance is

evaluated for the quaternion modulation using the quaternionic channel with

the results presented in [118]. These codes have been already shown in [57]

to promise high diversity gains as well as quaternion code rates for (2 × 1)

DP antenna configuration specifically r(Q2)
q = 1 and r(Q3)

q = 0.5, respectively.

Q2 =

z1 + z2j z4 + z3j

z∗2 − z∗1j −z∗3 + z∗4j

 . (6.5)

Q3 =

 z1 + z2j j(z1 + z2j)

i(z1 + z2j) −k(z1 + z2j)

 . (6.6)

6.3.1 Demodulation and Decoupled Decoding

Considering all the previous studies including [134] and [118], the decoding

has stayed as an issue. [118] has utilized the Maximum-Likelihood (ML) de-

coding with a consequence to design a method to estimate the states and

transmission information simultaneously. [57] has presented linear decoupled

decoding solution for the quaternionic channel model. This provides a de-

coupled decoding solution of the proposed quaternion demodulation. The

ML-decoding rule assumes a linear decoupled form as Equation (5.13).The

same decoding method can be applied to the proposed modulation scheme

using the quaternionic channel to maximize the diversity gains. As an il-
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lustration of the above result, the QODs given in Equation (6.6) has been

chosen to demonstrate that the above ML-decoding rule is both linear and

decoupled.

Corollary 5.1. The ML-decoding rule (5.13) for QOD given in Equation

(6.5), reduces to

min
z1
−2<(rq1z1h1) ,

min
z2
−2<(rq2z∗2h1) ,

min
z3
−2<(−rq2z∗3h2) ,

min
z4
−2<(rq1z4h2) , (6.7)

where zl ∈ C and rl, hl ∈ Q, l = 1, 2.

6.3.2 Computational Complexity

The proposed quaternion modulation using the quaternionic channel model

promises less computational complexity and independence from the num-

ber of transmitted symbols, ζ. Thus, For BPSK modulation, the com-

plexity remains
(
2
(
2N
)(
t
)
2
)

complex floating point calculations, instead

of
(
2ζ
(
2N
)(
t
)
2
)
for the coupled ML decoder. Although, [118] has presented

a modulation scheme with real computations only, yet this has been done

at the expense of the diversity gains, spectral efficiency and the overhead

of designing the joint detection for every different antenna arrangement and

modulation scheme. Also, the authors have not included the influence of in-

creased number transmitted symbols, mapping directly to the requirement of

greater number of DP antennas and thus need for higher number of timeslots

for transmission, on the complexity of the decoder. The proposed scheme is
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generalized and can easily be mapped to any number of antenna configura-

tions. This decoupled decoding solution reduces the receiver’s computational

complexity by refraining the use of matrices and thus, becomes a valuable

candidate for large MIMO systems.

6.4 Simulation and Results

To analyze the transmit diversity gains for the quaternion modulation using

quaternionic channel against the QMod scheme, presented in [118], different

QODs in Equations (6.3), (6.5) and (6.6), have been considered for 1 and 2
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Figure 6.2: Performance of the quaternion modulation using quaternionic channel
for pure AWGN channel.
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DP transmit antennas with code rates, r
(
q1

)
q = 1, r

(
Q2

)
q = 1 and r

(
Q3

)
q = 0.5.

Monte Carlo simulations are performed for the transmission of 105 symbol

blocks. Each symbol comprises of four bits where BPSK has been considered

as the data modulation scheme. Results have been presented for both pure

Rayleigh and AWGN channels where the channel coefficients are assumed

to be perfectly known at the receiver, whereas, the white Gaussian noise is

added to the horizontal and vertical polarizations uniformly.

Figure 6.2 highlights the performance of the proposed quaternion modu-

lation using the quaternionic channel model for pure AWGN environment. It

is clear that QMod shows better diversity gains as the cross-polar isolation(
χ−1
)
increases. Comparatively, the performance of the proposed quaternion

modulation model outperforms in terms of the diversity gains showing the

independence of the channel model over the cross-polar scattering effects due

to the embedded coupling in the quaternion space, Q.

Figure 6.3 presents the simulation results for a single transmit and single

receive DP antenna configuration. The system model presented in (1) in [118]

has been considered for comparison where the cross polar discrimination fac-

tor, α, has been considered to incorporate the cross-polar scattering effects.

The increase in this factor results in greater isolation between the horizontal

and vertical polarizations of the DP antenna which is directly related to the

increase in diversity gain. The comparison has been simulated considering the

proposed system design presented in Equation (6.3) for
(
1× 1

)
DP antenna

configuration. It is clear that the proposed model promises higher diversity

gains with the cross-polar scattering effects already incorporated into the

quaternion code and quaternionic channel design. The quaternion modula-

tion presented in [118] is dependent on the cross-polar scattering, which is an

unavoidable phenomenon when the DP antennas are used with complex rep-
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Figure 6.3: Performance of the quaternion modulation using quaternionic channel
for pure Rayleigh channel for (1× 1) DP antenna configuration.

resentation of the codes and channel. Whereas, with the quaternionic channel

model, the quaternion modulation promises maximum diversity gains.

Figure 6.4 provides the diversity gains achieved when the QODs Q2 and

Q3 are transmitted for the quaternion modulation in the two transmit and

single receive DP antenna configuration. It is evident that the codes designed

using the scheme in [57] uses lesser number of timeslots to transmit a code

block when compared to a complex STBC with similar antenna configuration,

which directly maps to better utilization of the spectrum. [118] did not discuss

how the codes will be extended for higher dimensions considering the issues of

orthogonality. The proposed quaternion modulation using the quaternionic
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Figure 6.4: Performance of the quaternion modulation using quaternionic channel
for pure Rayleigh channel for (2× 1) DP antennas configuration.

channel model from [57] provides a solution for the same modulation in higher

antenna dimensions with gains in terms of maximized diversity which makes

this model a promising candidate for the next generation massive MIMO

wireless communication networks.

In literature, the quaternion modulation has been done through optimal

manipulation of the two polarizations in the DP antenna to encode the data

for efficient transmission and detection at the receiving end. This design

demanded frequent switching of the polarizations on a single DP antenna

that adds considerbale hardware complexity in terms of electrical specifi-

cations. It is deemed far more optimal to transmit a null symbol than to
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switch of the relevant polarization. It is expensive and might also result in

delays due to extra time required to switch off one polarization and turn the

other one on and vice versa. The presented modulation scheme, [59], pre-

vents such problems by fully exploiting the available polariztaion states and

utilizing both polarizations of the DP antenna. The increase in the diversity

gains is a similar reflection of exploiting polarization diversity independent

of the space and time diversity. This was never the case when the quater-

nions constructed using the existing QODs were used with DP antennas.

The quaternion modulation using the quaternionic channel model provides

the maximum diversity gains incorporating the cross-polar scattering effects

embedded into the code and channel designs which are based on pure quater-

nion space, Q. This is a generalized model which can be extended to any DP

antenna dimensions. The number of DP antennas at the receiver can be in-

creased with the same construction mechanisms, providing an increase in the

diversity gains at the expense of increased space and cost requirement at the

receiver end. It is beneficial in terms of diversity gains, spectral utilization,

data rates and its application to future communication systems.

6.5 Conclusion

This chapter presented the quaternion modulation in [118] using the quater-

nionic channel model [57]. The coupling of the channel coefficients and code

variables embeds the cross-polar scattering effects. The quaternion modula-

tion achieves better diversity gains by exploiting space, time and polarization

diversities using the quaternionic channel model and independence from the

number of transmit and receive antennas. The literature consists of quater-

nion modulation developed using the notion of switching the polarizations
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of the DP antennas. However, they fail to fully exploit the benefits of po-

larization diversity and leads to adding hardware complexities in terms of

the overhead of switching the polarizations of the DP antennas. The pro-

posed model for quaternion modulation, [59], using the quaternionic channel

can be mapped to future communication systems due to its advantages in

terms of diversity gains, data rates, reduced receiver complexity and spectral

efficiency.
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Chapter 7

Quaternion Codes in MIMO

System of Dual-Polarized

Antennas

7.1 Introduction

Surge of high speed communication services has accelerated the demand for

efficient communication techniques that have the potential to make reliable

data transmissions without compromising on data rates. In this regard,

STBCs, based on orthogonal designs, are considered one of the key techniques

that have moved the capacity of wireless communication close to theoretical

limits. STBCs have been used extensively such as in third generation (3G)

standard and wireless local area networks (LANs) based on IEEE 802.11n.

Initially, they were proposed by Tarokh et. al [102] as a generalization of

the famous Alamouti code which is a COD [1]. The most attractive feature

of these orthogonal designs is the provision of full diversity along with low

complexity ML decoder. However, they achieve this attribute at the expense
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of code rate, i.e., the ratio of the number of independent complex transmitted

symbols and the number of total time slots taken to transmit a coding ma-

trix. On the other hand, a COD with full rate and maximum diversity exists

only for two single-polarized transmit antennas and maximum code rate ap-

proaches half with as the number of transmit antennas increase [16]. To meet

higher data rate demands, other designs such as complex quasi-orthogonal

STBCs have also been explored that provide comparatively higher code rates

but compromise on optimal decoders due to nonlinear and coupled decoding

issues [17]. To further enhance the capacity of communication systems, other

combinations of diversity providing techniques are being investigated.

In [19], orthogonally polarized transmissions through both ends of a DP

antenna were modeled through quaternions and later [20] laid the foundation

of OSTPBCs that utilize polarization diversity together with space and time

diversity. Polarization diversity can provide nearly similar performance to

spatial diversity without any measurable increase in antenna dimensions [21].

This is achieved with the use of DP antennas, which have two antennas of

orthogonal polarizations co-existing on a single antenna platform and there

has been a growing interest recently [135,136].

Based on the combination of polarization diversity with space and time

diversities, various QOD construction techniques have been proposed by Se-

berry et. al [20]. The primary motivation of these designs has been their

ability to provide higher code rates along with a low complexity quaternion

norm-based ML decoder. To illustrate the benefit of these designs, [20] pre-

sented an example of 2 × 2 order QOD and derived linear equation based

decoding solution for this configuration. They argued that quaternion de-

coding statistics can provide decoupled decoding for any QOD. Their sub-

sequent studies [109, 110] used the same QOD and emphasized the similar
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postulate that quaternion ML norm can provide optimal decoupled decoding

for any QOD construction. However, the authors corrected their decod-

ing rule in [122] and highlighted that the proposed decoding decoding rule

does not yield optimal decoding for all QODs, and therefore, the design of

semi-optimal or optimal low complexity decoders remained an open research

problem [125]. In this regard, [120] explored the designs for which quaternion

norm-based ML decoder resulted in optimal decoding solutions. However, it

is important to note that their proposed ML decoder works for a special class

of STBCs.

In this chapter, three famous generalized QOD construction techniques

are investigated [120] and two main short falls are identified which restricts

their use for large MIMO systems. Firstly, this iterative approach works only

in the case when the number of transmit antennas are in powers of 2, which

clearly restricts their use to other antenna configurations. Secondly, the code

rate decreases very sharply for higher order designs based on these iterative

techniques. Therefore, it was deemed necessary to develop codes that work

for any number of antenna systems besides having the main advantage of

attaining decoupled decoders in the presence of quaternionic channel as was

the case with iteratively generated designs [120]. This has been done follow-

ing the line of approach indicated in [16] which gives us a class of QODs that

are non-square and the code rate is bounded below by 1/2. The idea has

been to exploit the impact of a DP transmission channel at the receiver side

in such a way that ML quaternion norm criterion simplifies to a decoupled

decoding solution which reduces the decoder complexity significantly.

After obtaining a generalized ML decoder, quasi-QODs are explored. The

proposed quasi-QOD provides a code rate of two for four transmit DP an-

tennas. However, the quasi nature of these codes leads to a slight compro-
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mise on decoding complexity. The solutions obtained with this compromised

complexity-based decoder are still better than the coupled traditional ML

decoder based solutions.

The main contributions made in this section are:

• Proposal of a new class of QODs based on Liang mechanism [16] with

stable code rate as the number of transmit antennas increases.

• The class is shown as best suitable in describing point-to-point com-

munication among DP antennas.

• The proposed decoder is shown to provide linear decoding solution for

all STBCs obtained from QODs.

• A brief performance analysis is carried out for all obtained QODs.

7.2 Theory behind the QODs

As mentioned before that a quaternion is a combination of two complex

numbers q = z1 + z2j, therefore, it is natural to think of QODs satisfying

Q = A+Bj, where A and B are two complex matrices. It turned out that

any two arbitrary complex matrices do not necessarily give rise to a QOD

which satisfies Equation (??). Essentially, the authors in [20] found the key

requirements on A and B to ensure Equation (??), for the resulting QOD.

Interestingly, the amicable and symmetry conditions were found to play main

role for which an extensive theory was already in place and they used it to

generate class of QODs. Later it was found that all proposed quaternion-

based designs employed symmetric-paired complex matrices. Since the sym-

metry property is crucial in our study therefore we state it for a brief and

self-contained exposition.
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Definition 7.1 (QOD). Two CODs A and B based on complex variables

{z1, z2, . . . , zu} form a symmetric-paired design (A + Bj) provided AHB or

BHA is symmetric.

A relatively simple way to find such symmetric-paired designs arise from

the observation that swapping of certain columns of a COD generates an

equivalent COD. The resulting COD along with the original COD form a

symmetric-paired design. This technique was used in [20], for the search of

viable QODs. However, it is important to note that as the dimension of COD

matrix gets larger, not every permutation of columns of a COD yields a valid

QOD. Therefore, only one permutation per column is allowed to generate

valid QODs under this construction [121]. Following subsections describe

other possible ways to generate QODs. For square designs, three recursive

construction methods to find CODs were presented in [16], namely Adams-

Lax-Phillips, Józefiak and Wolfe constructions. It is easy to realize that all

three constructions recursively generate the same class of square QODs.

According to these constructions, a recursive COD A is designed for l+1

symbols embedded in a square matrix of order 2l such that

A =

G2l−1(z1, z2, . . . , zl) zl+1I2l−1

−z∗l+1I2l−1 GH
2l−1(z1, z2, . . . , zl)

 , (7.1)

where G2l−1(z1, z2, . . . , zl) represents a COD of order 2l−1 × 2l−1 defined

on symbols z1, z2, . . . , zl and l = {1, 2, 3, . . . }. For example, for l = 1,

G1(z1) = [z1]. Taking this as a seed element, higher order CODs such as

G2(z1, z2) and G4(z1, z2, z3, z4) can be constructed [16], recursively. In the

subsections, this way of COD generation is used to form different generalized

QOD constructions. In Figure 7.1, we briefly explains the basic nomen-

clature which describes the main working in quaternion domain. We start
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Figure 7.1: Quaternionic Nomenclature: Two symmetric-paired CODs A and B
generate a QOD Q, which gives rise to different quasi-codes CQ and Cq with linear
and decoupled decoders.

with two CODs that form a symmetric-pair such that they give rise to a

QOD. In earlier works, this was not directly used to describe communica-

tion among DP antennas. Rather, an STBC was constructed from a QOD

and its even columns represent signals being sent through one polarization

while entries in odd columns are signals transmitted through an orthogonal

polarization plane. However, the simultaneous transmission through a DP

antenna is being modeled by quaternions here. Although, an enriched theory

of quasi-orthogonal designs can be discussed yet the main focus is to work on

an approach which algorithmically identify among them, those designs that

have decoders with two main characteristics, i.e., linear and decoupled. It

is noticed that the departure from the complex to quaternion domain serve

this purpose. The dotted line connecting CODs A,B with quasi-STBCs CQ

or Cq indicates a vivid difference between their working which distinguishes

them in terms of code rates, decoding delays at both ends, zero vs non-zero

entries, linear and decoupled decoders.

The generalized construction techniques employ Equation (7.1), which

provides the symmetric-paired square CODs that act as seeds to generate

three classes of square and non-square QODs.
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7.2.1 Symmetric-Paired Design 1: (Square QODs)

This construction technique constructs QODs A + Bj in which COD B is

obtained from A through permutation of columns, where permutation oper-

ation on two columns m and n results in swapping the positions of these two

columns with each other. For all CODs based on the permutation of CODs

for a specific antenna dimension, the diversity order remains the same, there-

fore, without loss of generality we employ Equation (7.1) to prove following

theorem for which the details are added for self-contained exposition. We

will briefly present the proofs of remaining theorems.

Definition 7.2 (QOD). Theorem 7.1. For a given COD A in Equation

(7.1) and its permuted version B, a complex amicable and symmertic-paired

design can be constructed such that the following realization

Q2l(z1, z2, . . . , zl+1) = A+Bj =

 G2l−1 + zl+1I2l−1j zl+1I2l−1 +G2l−1j

−z∗l+1I2l−1 +GH
2l−1j GH

2l−1 − z∗l+1I2l−1j

 ,
(7.2)

provides a QOD of dimension 2l × 2l with rate (l + 1)/2l. Proof. We

first prove that CODs A and B given in Equation (7.2) hold the symmetric

property. It can be seen that

AH
2lB2l =

 O2l−1 2λ1I2l−1

2λ1I2l−1 O2l−1

 , (7.3)

where λ1I2l−1 = GH
2l−1G2l−1 + zl+1z

∗
l+1I2l−1 and O2l−1 is a 2l−1 × 2l−1 order

null matrix. Equation (7.3) shows that AHB is symmetric as its transpose

remains invariant. In order to check Equation (??), quaternion conjugate of
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Equation (7.2) can be written as

QQ
2l
(z1, z2, .., zl+1) =

GH
2l−1 − jz∗l+1I2l−1

z∗l+1I2l−1 − jGH
2l−1

−zl+1I2l−1 − jG2l−1

G2l−1 + jzl+1I2l−1

 . (7.4)

To prove orthogonality, multiplication of Equation (7.4) with Equation (7.2)

gives

QQ
2l
Q2l =

2λ1I2l−1 O2l−1

O2l−1 2λ1I2l−1

 = λI2l , (7.5)

where λ = 2λ1. Hence, Theorem 7.1 is proved.

The following example illustrates the construction in which an Alamouti

code G2 =

 z1 z2

−z∗2 z1

 is taken. Using Equation (7.1), a square matrix A of

order 4 is obtained. Consequently, the result is a QOD.

Example 7.1. Using the permutation operation on A, as described above

and representing it with B, we obtain following QOD Q1 = A + Bj, to be

used in the configuration of 4 DP antennas

Q1 =


z1 + z3j z2 z3 + z1j z2j

−z∗2 z∗1 + z3j −z∗2j z3 + z∗1j

−z∗3 + z∗1j −z2j z∗1 − z∗3j −z2
z∗2j −z∗3 + z1j z∗2 z1 − z∗3j

 . (7.6)

This QOD transmits 3 complex symbols z1, z2 and z3 in four time slots and

provides a 3/4 code rate.
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7.2.2 Symmetric-Paired Design 2: (Non-Square QODs)

The designs which do not necessarily require the use of permutation opera-

tions on columns are important for they do not limit code rates. This can

be done through a relatively simple way to recursively generate QODs using

a single COD A and a square diagonal matrix containing an extra symbol.

Therefore, these designs perform relatively better than the designs obtained

from the first technique. Their generalized formulation is described below.

Theorem 7.2.For a given square COD G2l−1(z1, z2, . . . , zl+1), the matrix

Q21×2l−1(z1, z2, . . . , zl+1) =

 G2l−1(z1, z2, . . . , zl) + zl+1I2l−1j

−z∗l+1I2l−1 +GH
2l−1(z1, z2, . . . , zl)j

 (7.7)

provides a quaternion design of order 2l × 2l−1, with rate (l + 1)/2l.

Proof.It is straightforward to checkQQ
2l−1×2l

Q2l×2l−1 = 2λ1I2l−1 = λI2l−1 .We

again start with an Alamouti code G2, to obtain a square COD G4 following

Wolfe construction which contains three symbols because 2l−1 = 22, implies

l = 3. Hence, we arrive at the following example.

Example 7.2. The COD G4 along with a diagonal matrix containing an

extra symbol z4 in Equation (7.7) gives rise to

Q2 =



z1 + z4j z2 z3 0

−z∗2 z∗1 + z4j 0 z3

−z∗3 0 z∗1 + z4j −z2

0 −z∗3 z∗2 z1 + z4j

−z∗4 + z∗1j −z2j −z3j 0

z∗2 −z∗4 + z1j 0 −z3j

z∗3j 0 −z∗4 + z1j z2j

0 z∗3j −z∗2j −z∗4 + z∗1j



. (7.8)

This QOD transmits 4 complex symbols z1, z2, z3 and z4 in eight time
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slots, thus provides a relatively better code rate of 1/2.

7.2.3 Symmetric-Paired Design 3: (Non-Square QODs)

The main issues related with quasi-CODs are discussed which promise a high

data rate at the expense of coding and decoding delays besides coupled and

non-linear decoding. This issue can be resolved in the quaternion domain.

For example, in Jafarkhani [2001] a quasi-COD of rate 1 was designed for

four transmit antennas

Cq =

 G2 L2

−L∗
2 G∗

2

 , (7.9)

using two CODs G2 =

 z1 z2

−z∗2 z1

 and L2 =

 z3 z4

−z∗4 z3

, which was shown

to have pair-wise decoding. These two CODs G2 and L2 are subjected to

the quaternion domain which helps reclaim decoupled and linear decoding

solutions. First of all, it is noted that the concept used in design 2, can be

generalized such that in place of a diagonal matrix which merely contains a

single extra symbol, a COD can be used. It turns out that the following theo-

rem provides a possibility of incorporating L2 with G2, in place of a diagonal

matrix. Resultantly, another recursive construction technique is obtained

which can be proved easily. Theorem 7.3. For two recursively generated

CODs G2l−1(z1, z2, . . . , zl) and L2l−1(z1+2, z2, . . . , z2l+2), a symmetric-paired

design,

Q2l+1×2l(z1, . . . , z2(l+1)) =

G2l + L2lj ,

L2l +G2lj

 , (7.10)

is a QOD of dimension 2l+1 × 2l with rate (l + 1)/2l.

It is easy to implement this technique as is shown in the subsequent example.
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Example 7.3. To generate a QOD for 4 DP antenna, we use G2 and L2

to obtain two CODs of higher orders G4 and L4 using Wolfe construction.

Consequently, Equation (7.10) gives rise to a QOD of rate 3/4

Q3 =



z1 + z4j z2 + z5j z3 + z6j 0

−z∗2 − z∗5j z∗1 + z∗4j 0 z3 + z6j

−z∗3 − z∗6j 0 z∗1 + z∗4j −z2 − z5j

0 −z∗3 − z∗6j z∗2 + z∗5j z1 + z4j

z4 + z1j z5 + z2j z6 + z3j 0

−z∗5 − z∗2j z∗4 + z∗1j 0 z6 + z3j

−z∗6 − z∗3j 0 z∗4 + z∗1j −z5 − z2j

0 −z∗6 − z∗3j z∗5 + z∗2j z4 + z1j


. (7.11)

Therefore, three recursive techniques are presented to generate square

and rectangular QODs from square CODs. As all of the above QODs are

obtained from the recursive techniques of CODs based on famous Adams-

Lax-Phillips, Józefiak and Wolfe constructions, therefore, an upper bound

can be used on these to arrive at the following result.

Theorem 7.4. The rate rQ, of all possible QODs in (3), (8) and (11)

obtained from square CODs is given by

rQ =
l + 1

2l
. (7.12)

This provides a class of QODs which are fully diverse [137] and earlier these

were shown to have decoupled decoders based on a semi-quaternionic chan-

nel model [121]. The system model [57] based on the characterization of

pure quaternionic channel is used and it is shown that the above designs all

have decoupled decoders and optimal decoding delays. Besides these advan-

tages, there is one drawback as mentioned in the remark below. All of the
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above construction techniques generate QODs for only configurations when

the number of DP transmit antennas are in powers of 2, i.e, 2, 4, 8, 16, . . .

which puts a heavy toll on the code rate as 1/2l sharply declines as the

number of antennas increase. Following above remark, it is essential to

find quaternion designs for general configuration of DP antennas like for a

(nT × 1)−system such that nT ∈ N and these codes have maximal coding

rates.

7.2.4 Maximal Rate QODs for General Configuration

of DP Antennas

In Liang’s paper [16], rectangular CODs of maximal rates are found algorith-

mically. The general procedure was given in the paper, however, such designs

do not carry a compact form as was found in the case of Equation (7.1). As

demonstrated below that the proposed procedure successfully works on the

famous examples given in [16], to generate designs for 3 and 5 DP antennas

among other configurations, respectively.

Lemma 7.1. A maximal rate RQ = 3/4 QOD for 3 DP antennas is given

by

Q4 =


z1 + z2j z2 + z1j z3 + z3j

−z∗2 + z∗1j z∗1 − z∗2j 0

−z∗3 −z∗3j z∗1 + z∗1j

−z∗3j −z∗3 z∗2 + z∗2j

 . (7.13)
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Proof A rectangular COD of maximal rate 3/4 is

U1 =


z1 z2 z3

−z∗2 z∗1 0

−z∗3 0 z∗1

0 −z∗3 z∗2

 , (7.14)

is used to construct an equivalent COD V1 based on the same principle of

permutation of columns such that UH
1 V1 is symmetric which can be verified

easily. Consequently, we obtain a QOD for three DP antennas of rate 3/4

given by U1 +V1j = Q4.

To complete the discussion, one QOD is included which is suitable for 4

DP antennas and is obtained using Liang’s approach. This can be compared

with the QODs based on recursive approach for the same number of antennas.

Q5 =



z1 z1j z2 + z3j z3 + z2j

z1j z1 z4 + z5j z5 + z4j

−z∗2 − z∗4j −z∗4 − z∗2j z∗1 z∗1j

−z∗3 − z∗5j −z∗5 − z∗3j z∗1j z∗1

−z4 + z2j z2 − z4j z6j z6

−z∗6j −z∗6 −z∗3 + z∗2j z∗2 − z∗3j

−z5 + z3j z3 − z5j −z6 −z6j

z∗6 z∗6j −z∗5 + z∗4j z∗4 − z∗5j



. (7.15)

Lastly, a QOD is constructed for 5 DP antennas.

Lemma 7.2. A maximal rate RQ = 2/3 QOD for 5 DP antennas is given
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by

Q6 =



z1 z1j z2 + z3j z3 + z2j z4 + z4j

z1j z1 z5 + z6j z6 + z5j z7 + z7j

−z∗2 − z∗5j −z∗5 − z∗2j z∗1 z∗1j 0

−z∗3 − z∗6j −z∗6 − z∗3j z∗1j z∗1 0

−z∗4 − z∗7j −z∗7 − z∗4j 0 0 z∗1 + z∗1j

−z5 + z2j z2 − z5j z8j z8 z9 + z9j

−z∗8j −z∗8 −z∗3 + z∗2j z∗2 − z∗3j 0

−z∗9j −z∗9 −z∗4 −z∗4j z∗2 + z∗2j

−z6 + z3j z3 − z6j −z8 −z8j z10 + z10j

−z∗10j −z∗10 −z∗4j −z∗4 z∗3 + z∗3j

−z7 + z4j z4 − z7j −z9 − z10j −z10 − z9j 0

z∗8 z∗8j −z∗6 + z∗5j z∗5 − z∗6j 0

z∗9 z∗9j −z∗7 −z∗7j z∗5 + z∗5j

z∗10 z∗10j −z∗7j −z∗7 z∗6 + z∗6j

0 0 z∗10 − z∗9j −z∗9 + z∗10j z∗8 + z∗8j



, .

(7.16)

Proof The proof of this lemma is similar to the Lemma 1, however, in this

case the underlying COD U is given in equation (100) in [16].

Following the same lines, it is easy to construct QODs for higher num-

ber of transmit antennas nT = 6, 7, 8 starting with the CODs given in [16]

(equation (101) and appendices C and D, respectively).
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7.3 Comparative Analysis of the Construction

Techniques

7.3.1 Code Rates

An important result which gives us bounds on the upper limits of code rates

of above QODs can be proved easily. For instance, the underlying CODs

which we employ in the construction of such codes have upper bounds (The-

orem 5 and Theorem 6 in [16]) therefore following result follows immediately.

Theorem 7.5. (a) For an even number of transmit DP antennas, the high-

est possible rate of QODs arising from rectangular CODs is bounded above

by

RQ ≤
n+ 2

2n
. (7.17)

(b) For an odd number of transmit DP antennas, the highest possible rate of

QODs arising from rectangular CODs is bounded above by

RQ ≤
n+ 3

2n+ 2
. (7.18)

Note that there is substantial difference between the code rates of QODs

obtained from the above approach, denoted by RQ, and those which are based

on recursive techniques represented with rQ. Figure 7.2 clearly describes

that as the number of DP transmit antennas increases the code rate rQ

sharply declines. Quite contrary, the code rates RQ of QODs based on Liang’s

approach remain stable. Regardless of the number of transmit antennas, we

can always obtain a QOD with code rate higher than or equal to 0.5. So we

obtain a robust approach of developing QODs based on Liang’s mechanism.
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Figure 7.2: Comparison of Code Rates: Red curve represent the code rate rQ
of QODs based on recursive methods. Code rates RQ of QODs based on Liang’s
approach are depicted with green curve.

7.3.2 Coding & Decoding Delays

In order to optimize throughput, it is essential to have codes with optimal

coding delay and QODs have an advantage of it. The decoding delay, denoted

here as ξ, is an important performance measure for STBCs. Essentially, the

decoding delay signifies the total number of time slots a receiver has to wait

to receive a complete block of code before starting the decoding process. This

implies that higher order code matrices require larger decoding delays. To

compare the performance of different STBCs schemes, i.e., symmetric-paired

design 1, 2, 3 and Liang’s approach respectively, we enlist values of ξ for

codes in case of 3, 4 and 5 DP antenna arrangements in Table 1. In the

table, Nt denotes the number of DP transmit antennas. From the table, it is
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Table 7.1: Decoding Delays

Code Designs Nt = 3 Nt = 4 Nt = 5
Design 1 ∗ ξ = 2 ∗
Design 2 ∗ ξ = 4 ∗
Design 3 ∗ ξ = 4 ∗
Design 4 4 ξ = 8 15

seen that for 3 and 5 DP antenna systems there is no QOD obtainable from

iterative techniques which we represent with ∗.

7.4 Quaternionic Channel Model

The simultaneous transmission from both ends of a DP antenna can be re-

garded as a hyper signal which consists of two complex numbers in two

orthogonal polarizations. It propagates through space and received as a hy-

per signal by the DP antenna at the receiver end in a given time slot. This

hyper signal can be represented as a quaternion [19] which gives us a reason

to develop system model in the quaternion domain. An important compo-

nent of the system model is the channel which we assume to be quaternionic

following the line of approach followed in [57]. Therein, we observe that the

product in the quaternion domain holds a key of consistent and viable model.

A TISO of DP antennas is considered. It is necessary to emphasize the

role of quaternions which is more recognizable in this case, therefore, we have

R =

r1
r2

 =

q1 q2

q3 q4

h1
h2

+

n1

n2

 , (7.19)

where each element in the above construction is a quaternion. Through each

antenna in the above TISO system, the transmission of a pair of two complex

symbols is encoded in q1 and another pair in q3. This indicates that the above
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QOD exploits time and space diversities along with polarization diversity. It

is worth pointing out that each quaternionic product, e.g., qahb contains a

crucial information about the nature of quaternion domain. If we decompose

it for a general quaternionic product then we obtain qa1hb1−qa2hb2+j(qa1hb2+

qa2hb1), where qa = qa1 + jqa2 and hb = hb1 + jhb2. Therefore, we will obtain

four complex channel gains for each antenna in a 2× 1 system. Note that we

have four complex channel gains between a TISO system of DP antennas. As

this system is equivalent to a MIMO 4×2 system of single-polarized antennas,

therefore, it may appear that it should have eight channel gains in total with

two for each link. However, in our proposed model each quaternionic product

results in the same number of channel gains.

Subsequently, a system model for a MIMO system of DP antennas can

be constructed in the same way for such a system with Nt×NrDP antennas

RT×Nr = QT×NtHNt×Nr +NT×Nr , (7.20)

which transmits symbols in T−times slots which are assumed to be points

in the QPSK constellation. The channel matrix is H = [hρσ], where ρ =

1, 2, . . . , Nt and σ = 1, 2, . . . , Nr. The channel is assumed to represent a flat

fading channel and the path gain from ρ transmit DP antenna to receive DP

antenna σ given by a quaternion hρσ = hρσ1 + hρσ2j. The complex chan-

nel gains, hρσ1 and hρσ2 incorporate the effects of cross polar scattering and

each element of channel gain matrix is a complex Gaussian random variable

(RV) with zero mean and unit variance. Moreover, the noise N = [nTσ]
T ,

and nTσ = nTσ1+nTσ2j, such that nTσ1, nTσ2 ∀ σ = {1, 2, . . . , Nr}, represent

the entries of white noise as two dimensional independent and identically dis-

tributed (i.i.d.) complex Gaussian RVs with zero mean and identical variance

per dimension.
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7.4.1 Linear and Decoupled ML Decoder

Based on the system model given in Equation (7.20), the following theorem

confirms a linear decoupled solution at the receiver for all QODs constructed

in Section 2 of this chapter. It was previously proved for non-iterative QODs

in [57] but its validity is now confirmed for all QODs obtained in Section 2.

Theorem 7.6. For a given system model in Equation (7.20), the ML-

decoding rule assumes a linear decoupled form

min
z
||R−QH||2 =min

z

(
tr(RQR) + λtr

(
HQH

)
− 2<

(
tr
(
RQQH

)))
.

(7.21)

The main contributing factor in the above rule is <
(
tr
(
RQQH

))
, which

needs to be minimized for any transmitted symbol encoded as a quaternion in

a given time slot. The appearance of Q indicates the linearity of the decoder

as well as the computational load at the receiver is reduced significantly.

As an illustration of the above result, we choose QODs given in Equations

(7.6) and (7.8) and demonstrate that the above ML-decoding rule is both

linear and decoupled. For remaining QODs Q3,Q4,Q5 and Q6 in Equations

(7.11), (7.13), (7.15),(7.16) respectively, a similar decoding result can be

obtained easily. Corollary 7.1. The ML-decoding rule (7.21) for QOD

given in Equation(7.13), reduces to the real part of

− 2min
z1

(rQ1 z1(h1 + jh2) + rQ2 z
∗
1(jh1 + h2) + rQ3 z

∗
1(1 + j)h3) ,

− 2min
z2

(rQ1 z2(jh1 + h2)− rQ2 z∗2(h1 + jh2) + rQ4 z
∗
2(1 + j)h3) ,

− 2min
z3

(rQ1 z3(1 + j)h3 − rQ3 z∗3(h1 + jh2)− rQ4 z∗3(jh1 + h2)) , (7.22)
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where R = [r1 r2 r3 r4]
T , is a received quaternion vector and h1 = h11+h12j,

h2 = h21 + h22j and h3 = h31 + h32j.

We now broaden our discussion to include designs which have significantly

higher code rates than obtained from the approaches discussed in the previous

sections. In order to do that we need to compromise on orthogonality in

which case it is not possible to have decoupled linear decoder like Equation

(7.21). It turns out that such quasi designs have other features to offer.

Subsequently, we construct these quasi QODs by extending the standard

approach as developed for the complex domain [18].

7.5 Quasi QODs

Unlike the complex domain, for two DP antennas there exists a QOD of rate

2 and was shown to attain a decoupled decoder [57]. We employ it

P1 =

z1 + z2j z3 + z4j

z∗2 − z∗1j −z∗4 + z∗3j

 , (7.23)

to construct a higher rate quasi QOD Qquasi as follows. By considering an

identical code matrix with different symbols

P2 =

z5 + z6j z7 + z8j

z∗6 − z∗5j −z∗8 + z∗7j

 , (7.24)

following the same line of approach as used for quasi CODs [18], we obtain

a quasi QOD

Qquasi =

 P1 P2

−PQ
2 PQ

1

 . (7.25)
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Thus, we obtain a quasi QOD to be used in the configuration of 4 DP anten-

nas capable of sending 8 complex symbols in four time slots yielding a code

rate of 2, given by

Qquasi =


z1 + z2j z3 + z4j z5 + z6j z7 + z8j

z∗2 − z∗1j −z∗4 + z∗3j z∗6 − z∗5j −z∗8 + z∗7j

−z∗5 − z6j −z6 + z∗5j z∗1 + z2j z2 − z∗1j

−z∗7 − z8j z8 − z∗7j z∗3 + z4j −z4 + z∗3j

 . (7.26)

The above code Qquasi does not satisfy the main quaternion orthogonality

condition as

QQ
quasiQquasi 6= λI4×4, (7.27)

where λ = ||z1||2 + ||z2||2 + ||z3||2 + ||z4||2 + ||z5||2 + ||z6||2 + ||z7||2 + ||z8||2.

However, the simulation curve for the above code is obtained in the next

section.

7.6 Simulation and Results

To evaluate the performance and diversity gains, we employ QODs, i.e.,

Q1−Q6, corresponding to single and DP receive antenna configurations. For

simulations, QPSK is used. The receivers are aware of the channel coefficients

and uniform white noise is added in each polarization.

The codes constructed using the Liang approach-based construction tech-

niques provides less complex receivers. For the codes Q1,Q6, in Figure 7.3,

it is clear that these codes have linear and decoupled decoding at the receiv-

ing end due to the use of the specific construction technique using the DP

antennas and the quaternionic channel model. This has been possible due to

the quaternionic channel exploiting the polarization diversity independently
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Figure 7.3: BER vs. SNR performance of Q1,Q2,Q3,Q4,Q5 & Q6 for single
receive DP antenna.
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Figure 7.4: BER vs. SNR performance of Q1,Q2,Q3,Q4,Q5 & Q6 for two
receive DP antenna.

using the polar as well as cross-polar scattering between the DP antennas.

We can see that the codes Q1,Q2 and Q3 are transmitted using the four DP
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antennas at the transmitting end and have the code rates of 3
2
, 1

2
, 3

4
and 3

4
,

respectively. While, the codes Q4 and Q6 use three and four DP antennas

during transmission with codes rate of 3
4
and 2

3
, respectively. We can see that

the proposed code construction technique has no restrictions on the number

of transmit and receive antennas. This is demonstrated in Figure 7.3 where

both even and odd number of DP antennas are used to transmit the codes.

The effects of increasing the receiver diversity are visible in Figure 7.4.

Figure 7.4 shows that the receiver diversity has positive impact on the diver-

sity gains. Use of the quaternionic channel exploits the polarization diversity

and promises decoupled decoder for any number of receive DP antennas. In

comparison to the work done in the past, the proposed design does not com-

promise the code rates when the number of transmit antennas are increased.

Such an increase int he code rates with higher diversity gains are the require-

ments of the future MIMO systems to support greater channel utilization

and efficiency. The freedom of the number of receive antennas that can be

utilized by the QODs during their transmission from a quaternionic channel-

based system has been further emphasized in Figure 7.5. The code Q4 shows

increasing diversity gains as the number of receive DP antennas are increased

at the receiving end.

The computational complexity of the proposed decoder used for the codes

in Figure 7.3, Figure 7.4 and Figure 7.5 promises linear and decoupled de-

coding at the receiver. The decoder remains independent of the number of

unique transmitted symbols, i.e., ζ. This has a huge impact in simplifying

the complexity of the receiver in terms of the calculations to be performed.

In case of the coupled decoder, the receiver complexity remains dependent

on the number of unique transmitted symbols and has an exponential rela-

tionship with it. Considering N transmit antennas and T timeslots used to
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Figure 7.5: BER vs. SNR performance of Q4 for one, two and three receive DP
antenna.

transmit a single block of code, the computational complexity of the coupled

decoder is O(4ζ(N)(T )(2)). However, this reduces significantly in the case of

the proposed decoder design, where the computation complexity reduces to

O(4(N)(T )(2)).

The decoupled decoding of the quasi-orthogonal codes has been a research

problem as this compromises the coding rate for increased number of transmit

antennas. A unique construction technique has been presented to form quasi

QODs with higher code rates. For the antenna configuration of four transmit

single receive DP antennas, the quasi QOD presented in Equation (7.26) has

a compromised receiver complexity but promises higher gains in comparison

to the coupled traditional ML-based decoder designs. The presented QOD

construction mechanisms not only provides flexibility in generating new QOD

designs but also supports decoupled decoding of the STBCs generated from
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Figure 7.6: BER vs. SNR performance of Qquasi for one receive DP antenna.

the QODs. This has remained as a problem that needed a solution since

long. This research has presented a unique solution for supporting decoupled

decoding of quasi-QODs with representation of maximal rates that they can

achieve.

7.7 Conclusions

QODs with DP antennas have been studied to provide higher diversity gains

and code rates. Research has addresseed the design of efficient QODs to

present decoupled decoding but this has failed till date. This chapter presents

the construction of QODs based on the Liang approach using the DP anten-

nas and the quaternionic channel model. The unique method of constructing

QODs provides linear and decoupled decoding at the receiving side where the

computational complexity of the decoder remains independent of the number

114



CHAPTER 7. QUATERNION CODES IN MIMO SYSTEM OF
DUAL-POLARIZED ANTENNAS 115

of unique transmitted symbols. Also, construction technique of quasi-QODs

has been presented where the code rate is not compromised at higher number

of transmit antennas [60]. In future, these designs can be investigated for

optimizing the receiver complexity further considering their suitability for

future wireless communication systems.
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Chapter 8

Conclusion and Future

Recommendations

8.1 Conclusion

QODs had been studied extensively [13,20,98,102,109,110,118,124,128,138].

Although, many coding and decoding techniques were proposed for STBCs,

none had addressed the quaternion designs in their pure form. Most of the

evaluations were carried out on system models build using the complex quasi-

orthogonal STBCs. These designs supported higher diversity gains in MIMO

systems, however, the compromise was made on the performance. Use of

these non-orthogonal designs for the construction of higher order codes in-

creased the complexity of the receiver. This made it difficult to obtain a

decoupled decoding solution. The basic design of using the quaternion or-

thogonal codes was considered to exploit the benefits of polarization diversity

but this failed to work. Also, the study of STBCs shows that the cross polar

components contribute to the polarization diversity in combination with the

time diversity. Thus, it became evident that polarization diversity, alone,
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can not be explored for gaining the diversity gains.

This thesis exploits the polarization diversity by proposing a new sys-

tem model based on pure quaternion channel design. The space, time and

polarization diversities are exploited in quaternion domain to achieve promis-

ing diversity gains. Thus, a new wireless communication channel model is

presented. This channel, i.e. the quaternionic channel comprises of pure

quaternion channel coefficients. Using these pure quaternions for the wire-

less channel as well as the quaternion orthogonal codes, polarization diversity

gain is achieved independent of the other forms of diversities i.e. space and

time. This system not only provides a generalized mechanism of code gen-

eration but also provides simplicity in terms of receiver design. With the

use of quaternion channel and code designs, it is possible to achieve decou-

pled decoding solution at the receiving end. Performance evaluations have

also confirmed these findings that pure quaternion designs fully exploits the

polarization diversity and promise higher diversity gains.

Quaternion algebra has been explored to address construction and decod-

ing techniques in the wireless communication channel. In this regime, DP

antennas are used at both the transmitter and receiver ends, which provides

the most suitable infrastructural support to implement the QODs where the

quaternionic channel can be considered. Construction of QODs promising

higher diversity gains by exploiting space, time and polarization diversities

are restricted under conditions which have been evaluated. Through use of

quaternion algebra, the proposed quaternionic channel contributes in present-

ing iterative as well as non-iterative construction techniques for QODs. The

decoding at the receiver has been discussed at depth to reduce the receiver’s

computational complexity. The investigation has revealed a remarkable con-

tribution of this dissertation where linear decoupled decoding solution exists
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for not only square but also non-square designs. This solution generalizes to

environments experiencing polar as well as non-polar scattering. The con-

struction techniques presented in this thesis are based on pure quaternions

eliminating any restrictions on the number of DP antennas to be used at the

receiver side.

An application of the proposed quaternionic channel model has been pre-

sented to contribute in better efficiency of modulated data in terms of higher

diversity gain. Quaternion modulation, [59], has been evaluated using the

quaternionic channel model where the cross-polar scattering effects are em-

bedded in the coupling between the quaternion orthogonal code entries and

quaternionic channel coefficients. With the quaternionic channel model and

pure QODs based on quaternion algebra, space, time and polarization di-

versities are exploited independently and their combined impact can be seen

in the diversity gains of the quaternion modulation. The proposed system

model for the quaternion modulation is independent of the number of DP

antennas used at transmitter or receiver end. Another contribution of imple-

mentation of quaternion modulation using quaternionic channel is the linear

decoupled decoding solution that simplifying the receiver.

The quaternionic channel model and the different construction techniques

(i.e. iterative and non-iterative) developed for QODs have been considered

for flat-fading Rayleigh channels. This helps in protecting the signal from

fluctuating across its transmission. Thus, the code is likely to perform well

when it is experiencing the similar environment as it is designed for. The

proposed system model using the quaternionic channel with transmit diver-

sity will support beneficial results in frequency selective channels where the

increased transmit diversity can support the signal deterioration. The pre-

sented system has been shown, in Chapter 7, to extend to higher dimensional
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codes using many transmit antennas. Thus, the suitability of the proposed

system model based on the quaternionic channel and pure QODs is seamless

for massive MIMO systems.

8.2 Future Recommendations

Massive MIMO communication systems in future will demand generalized

solution exploiting the benefits of space, time and polarization diversities

independently, in order to combine their composite impact for higher di-

versity gains. This will promote successful transition to next generation of

wireless communication systems i.e. 5G, 6G and beyond. The current re-

search has targeted the channel design considering the extensive use of DP

antennas and presenting a system model based on a channel design using

quaternion algebra. In this dissertation, DP antennas are explained to trans-

mit a pure quaternion that achieves higher diversity gains as it traverses the

quaternionic channel. The QODs as well as the quaternionic channel uses

pure quaternions that helps in exploiting the polarization diversity by using

DP antennas. The research done in this dissertation has several advantages

that applies not only to the optimization of future generation of wireless

communication networks but also unfolds new dimensions for research and

study. A detailed mathematical model has been presented in this thesis which

demonstrates that polarization diversity can be exploited independently as

the quaternionic orthogonal codes are transmitted using DP antennas and

provides not only diversity gains but also promises higher code rates, even

full rate codes. This has been a breakthrough contribution of this disserta-

tion, where code rates comparative to Alamouti codes are possible [1]. Some

future recommendations have been listed below.

119



CHAPTER 8. CONCLUSION AND FUTURE RECOMMENDATIONS 120

• In future, it has been observed that for QODs using more than one DP

antennas, time diversity is used for achieving higher diversity gains.

Thus, a possible future direction can be a detailed mathematical anal-

ysis to design the quaternion orthogonal codes such that they can pro-

vide higher order codes without such dependencies. In this domain,

further extension of this work to clifford might provide us with a viable

solution [139,140]. Additionally, study can be done in designing higher

order QODs and their mathematical bases.

• Generalized iterative construction techniques has been proposed pro-

viding a decoupled solution for square as well as non-square code de-

signs. Extending the research in this dissertation to further design

non-zero codes seems an interesting area for future research and analy-

sis. Additionally, these iterative construction techniques can be further

explored for designing codes for higher dimensions.

• Construction of QODs using non-iterative techniques has been pre-

sented where the decoupled decoding solution at the receiving end with

promising code rates makes it a novel contribution. This can further be

explored in the realm of massive MIMO systems for future generations

of wireless communication systems.

• The quaternion modulation designs provides a decoupled decoding so-

lution with higher diversity gains, increased data rate and reduced re-

ceiver complexity. This design can be extended to future wireless com-

munication systems by evaluating its application to other modulation

techniques.

• The QODs designed using the quaternionic channel model are devel-

oped using the flat fading Rayleigh channel. Practical evaluations of
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the performance of the proposed QOD designs in presence of frequency

selective channels might reveal new insights and open further dimen-

sions for research.

This dissertation proposes a quaternionic channel model and the design

of pure quaternion orthogonal coding techniques. This has numerous advan-

tages for future wireless communication systems, some of them have been

detailed above subject to further study and evaluations.
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