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Abstract

Rampant evolution of the fifth-generation mobile communication (5G) re-

search and Internet of Things (IoT) opens up a new range of possibilities

enabling ubiquitous wireless solutions in numerous fields that includes vis-

ceral surgeries, strident environmental monitoring, harsh industrial condi-

tions, and military reconnaissance, however, these applications are restricted

by various factors such as power consumption which is one of the signifi-

cant concern. Techniques that use less energy in modulation such as FSK

(Frequency Shift Keying) is more propitious for applications where reducing

power consumption is the primary goal however FSK systems experience a

blend of both time as well as frequency offsets (errors). In this thesis, we

assess the deleterious effect of timing offsets in particular. A novel method

is proposed for the estimation of timing offset error by sending a known pi-

lot training sequences in pairs of two bits/symbols simultaneously, one after

another, this process ameliorates the manipulation of known mathematical

equations for obtaining. Method of moments (MoM) estimator that equates

sample moments with theoretical moments is a long-established procedure

for finding point estimators. we correctly estimated the Timing offset using

a moment-based estimator in this thesis.

x



Chapter 1

Introduction and Background

to Thesis

1.1 Evolution of 5G

1.1.1 Philosophy of 5G

The world’s appetite for wireless speed has been unquenchable and fifth

generation of cellular networks (5G) is another endeavour in this development

leap that historically happens every decade. Technically every sentient being

inhibits inside an ocean of electromagnetic signals and for the generation of

millennials it is a digital sanctuary, we breath and respire inside connected

digitized world. [1]

5G is considered a game changer, it is not just an improvement to its

predecessor cellular network such as providing much higher data rates than

4G and LTE [3–7]. It is technological innovations and matchless engineering
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indignity. 5G is important for delivering connectivity for new vertical domain

services and applications, such as factory automation and self - driving cars

and asset tracking, smart grid, energy/ utility monitoring, smart homes,

physical infrastructure, remote monitoring, beacons and connected shoppers.

In reality, according to industry analysts IHS Markit, 5G would allow 12.33

trillion in global economic production by 2035. [8]. According to an IDC

report, the amount of data generated, captured, and replicated around the

world could increase from 33 Zettabytes (ZB) in 2018 to 175 Zettabytes (ZB)

by 2025 [9]

The development in the many indispensable technologies of this decade,

such as, ,massive connectivity, millimeter waves (mmWave), massive multi-

input multi-output (MIMO), software defined networking (SDN), scalable

Internet of Things (IoT),new radio access technologies (RAT), network func-

tion virtualization (NFV), Big data and mobile cloud computing etc., and

their applications in many areas have revamped and revolutionize the wireless

ecosystem of next generation 5G cellular network.

1.1.2 5G Network Services

The 5G network infrastructure will not only be able to offer mobile connec-

tivity to end users, but it will also be able to provide coverage in the three

sections below. [10,11]:

• Enhanced mobile broadband (eMBB): 5G network is expected to de-

liver improved performance than its predecessor cellular networks in

terms of wide-area coverage, increased data rate and high mobility to

2



Figure 1.1: 5G services classification and its use cases in IMT 2020 [1, 2]

end users.

• Massive machine type communications (mMTC): Second category that

attracted attention of academia as well as industry is mMTC, in this

service, of deployment a very large number of sensors and other de-

vices are accommodated in relatively small area i.e. over 1,000,000

devices/km square. Well practically these devices have low-cost and

economical in nature, expected to have a battery life and capable of

receiving insensitive data .

• Ultra-reliable and low latency communications (URLLC): This ser-

vice is designed for applications that require a high level of latency as

discussed in abstract of our thesis and strict reliability requirements.

There is wide range of applications usage cases which have such strin-

gent requirements such as factory automation, tactile internet, smart

homes, modern system for transportation etc., as shown in Fig. 1.1.
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Next generation 5G networks has the liberty to provide better services to

end devices numerous domain usages specially to services like Internet of

Things (IoT).Next technological advancement and next big thing to be rev-

olutionised is IoT, this is going to be as big transformation as deployment

of internet in 1960s. By this way billion of devices are going to connect to

internet and this next technology has better intergration with internet world.

With the massive growth in the usage of Internet of Things (IoT) devices,

new techniques for providing improved connectivity, lower latency, and more

efficient networks to meet the needs of IoT devices in smart applications

have emerged. [12]. IoT application can utilize these new services provided

by 5G network after deployment. The key enabler in this are URLLC and

mMTC [13].

1.2 5G and IoT

IoT is gaining rampant attention as it is considered one of the most ef-

fective technology in transforming our lives. [14] Analysts at the business

insider estimated that over more than 34 billion devices will be connected

by 2025 [15]. However to meet such demands for deployment of IoT devices

has to rely on an effective architecture for systematic communication. [16,17]

With extended coverage, lower latency, higher throughput and better con-

nectivity with massive bandwidth paved a way for the deployment of sensors

connected to internet. The prospective 5G in tendon with IoT can make sig-

nificant contribution by connecting billions of smart devices together through

internet. Moreover smart sensors, artificial monitoring systems to create a
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massive IoT that is inundated by messages and signals jointly interacting

in nature that has capabilty to share data even in absence of the human

interactions. [15,18]

The heterogeneous nature of applications make things to handle quite

complicated, IoT system to diagnose if those particular end devices would

satisfy need of those application for which architecture were designed [19,20].

Perfect architecture for IoT is quite an impossible task and every new ap-

plications have to face new challenges hence things ought to be improvised

keeping in mind the particular needs. Excising IoT system for different appli-

cations use differnent domains forBLE, ZigBee, and other wireless technolo-

gies Wifi, LP-WA networks, and mobile networks (e.g., MTC using 3GPP,

4G (LTE)) are examples of other technologies, etc. In this way IoT is evolv-

ing quickly. Advance research includes using combinations of these domains

for specific applications. IoT is gaining importance tremendously in manu-

facturing production as well as supply chains industry. Moreover in Industry

4.0 is based on the use of cyber physical system (CPS), in which data from

all interconnected devices are collected data for the purpose of monitoring,

centralizing control of the factory automation, perfect synchronization be-

tween cyber computational space and for real time data processing on floor

can be efficiently be monitored [21].

1.2.1 Challenges of 5G IoT systems

There are still various challenges to contend with, in order to realize the full

capacity of IoT despite enormous efforts of standardization authorities, al-
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liances, and companies. These issues should be taken into account in different

areas Application support infrastructure, business practices, social and envi-

ronmental impacts Researchers are contemplating over it to overcome chal-

lenges of prospective requirements from the technological perspective. [16] In

the last several years, extensive efforts have been carried out to investigate

a number of complex topics for 5G IoT:

• High data rates requirement for future IoT applications of IoT needs

25 Mbps in many scattered nodes of an agglomerated systems such as

HD streaming of the video in concerts , virtual reality (VR), and the

augmented-reality (AR) and other applications. [22].

• Reliability resilience, 5G-IoT nodes accelerating with high speeds en-

tailed in remote areas require enhanced coverage and handover effi-

ciency. Such as vehicular IoT nodes moving at higher speeds [23].

• Connection density, huge number of nodes that are connected in 5G-

IoT should have the capability to support the successful delivery of

data in an area and time without losing synchronisation. [24]

• Security is one of the major concern for IoT devices, strategies to pro-

tect connectivity and privacy of the user, the 5G IoT requires an im-

proved security implications and there is alot to do in terms of improv-

ing the security of the entire network holistically.

• Better battery life, devices deployed under harsh environmental condi-

tions such as underwater, fire-burners, remote desert areas for military

surveillance have to work over time and battery is major concern in

6



such applications [25]. There are different modulation techniques spe-

cially redefined for IoT to cope with energy issues, however this is still

one of the major challenge to cope. Wireless communication is all

about Trade-offs and for such requirements researchers propose sacri-

ficing bandwidth over energy by using such techniques, such as FSK

modulation in our own case.

1.2.2 Energy efficiency in IoT

As the commercial deployment of the fifth generation 5G-IoT is advancing

rapidly in many countries of the world, academia and researchers are still try-

ing to overcome practical challenges. Two of the prominent areas in research

with the ever growing need for consumers to find all the knowledge they

need on the go as IoT is intended to connect all devices in near future. [26]

Nodes topology, error detection, data management, energy consumption re-

duction are the primary issues for IoT. However, the construction of less

power consumption rate is the main concern for the researchers, with the

persistent need for processing of data. [26] and hence, persistent requirement

for collecting data from different sources, proposition and implementation of

theThe primary focus of researchers is on low-power rating sensors and many

industries have underscored the importance of devising efficient strategies in

terms of energy for data distribution that may resist re-calibrations of end

devices such as sensors.
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Figure 1.2: Transmit power versus bandwidth efficiency in fading channel
[27]

1.3 Energy efficient modulation

In modulation such as M-ary, the symbols that are transmitted are deciphered

from a set of M (M=2 in case of binary) different waveform. It is obvious from

all this that log2 of M bits are transmitted in each symbol. We will revisit

all modulation techniques to see which one suits better for IoT end devices.

Basically modulation is changing either of the three characteristics of the

wave, either phase, amplitude, frequency or any combination of them. M-

ary Quadrature Amplitude Modulation (M-QAM), M-ary Frequency Shift

Keying (M-FSK), and M-ary Phase Shift Keying are some examples (M-

PSK).

Figure 1.2 tells us about transmitted power versus energy efficiency. Wire-

less communication is all about trade-off, we have to sacrifice one particular
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thing for achieving another thing, this is sort of a rule of thumb. So here in

this case we can see clear distinction. M-PSK sacrifices power for the sake

of bandwidth, hence MPSK is better modulation scheme in terms of spec-

tral efficiency, however same is not true for energy efficiency. For an energy

efficient communication we ought to move to M-FSK from QAM and PSK,

ASK. [27]

Another significant point we discovered is that for M greater than 8,

M-FSK is more effective than M-PSK/M-QAM.At small M, M-FSK is less

energy-efficient, and non-coherent detection requires 6dB more power levels

to achieve the same BER efficiency.The symbol SNR needed for M-PSK/M-

QAM grows very quickly as the number of M increases.

1.3.1 Two primary sources of degradation in FSK

As we have seen that Noncoherent orthogonal M-ary frequency-shift-keying

(M-FSK) is a perfect candidate for those IoT devices where the requirements

of the bandwidths are not too stringent. While most research about mod-

ulation and demodulation techniques for the additive white Gaussian noise

(AWGN) channel as well as Rayleigh fading channel aimed at the receiver

when it is supposed to be timed precisely as well as for frequency .

It has been presumed that receiver already have ideal conditions and have

all knowledge about the times for which FSK modulation changes the state

and it also have a better knowledge about received carrier frequency. How-

ever while incorporating this in practice such precise information is seldom

available and thus the receiver ought to to either estimate this knowledge
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from the signal that is received in an AWGN. While on the receiving end,

time estimates and received carrier frequency estimations are made, between

these calculations and their true values, there is the risk of a mistake. Degra-

dation occurs as a result of the error risk rises due to a lack of perfect time and

frequency synchronisation, the performance relative degrades, the ideal case

is not possible when precise knowledge of time and frequency is unknown.

1.3.2 Frequency and Timing offset

In case when receiver carrier frequency is determined but the symbol epoch

is unknown, the receiver measures an own symbol period, which is Deltat

seconds off from the real epoch. Due to the lack of time synchronisation,

signal attenuation occurs in the detector that is matched to the entering

frequency, as well as loss of orthogonality because of which signal spillover

into the remaining detectors. It is denoted by λ in our work.

The symbol epoch is set properly even if the receiver carrier frequency

is uncertain The receiver creates its own frequency estimate, which is by ρt

seconds off from the exact carrier frequency. . Owing to the unavailability

of frequency synchronisation, signal attenuation occurs in the detector that

is matched to the incoming frequency, as well as loss of orthogonality, which

causes signal spillover onto the other detectors. It is denoted by ρ in our

work.
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1.4 Estimation Theory

For current era of wireless communications as well as signal processing esti-

mation theory provides a large number of techniques that has a wide range

of application such channel estimation is one of the most popular among all

of them. Moreover channel estimation, equalization, synchronization are also

estimated with the help of these techniques and theories.

1.4.1 Method Of Momenet estimation

The Method of Moment (MoM) estimation includes equating theoretical mo-

ments to the sample moments of given population. MoM for the point esti-

mation is one of the most efficient method for solving tedious and rigorous

problems that are quite non-linear in nature

1.5 Thesis Motivation

In an IoT realm,energy-efficiency and battery constraints are among major

challenges specially for applications that are working under severe condi-

tions and harsh environments, such as military reconnaissance, underwater

surveillance and remote deserts. Since FSK modulation consumes less energy

compared to other modulation schemes and is best contender for such appli-

cations, however A combination of time and frequency offsets occur in prac-

tical M-FSK systems (errors). The motivation of this thesis is study estimate

and assesses the deleterious effect timing-offset in particular by method-of-

moment approach.

11



1.6 Thesis Contribution

The thesis work presents the following main contributions:

• Estimated and assesses the deleterious effect of timing-offset

• Estimated variance of noise N which is subsequently used to derive

timing-offset λ in Rayleigh faded environment

• Method of moments (MoM) estimator that equates sample moments

with theoretical moments is a long-established procedure for finding

point estimators. Using a moment-based estimator, we correctly mea-

sure the Timing offset.

• A novel method is proposed for the estimation of timing offset error λ by

sending a known pilot training sequences in pairs of two bits/symbols

simultaneously, one after another, this process ameliorates the manip-

ulation of known mathematical equations for obtaining λ.

• We verified these results in Wolfram Mathematica 11.8 and simulated

results in MATLAB

1.7 Thesis Organization

The organization of the thesis is presented in following manner. First liter-

ature review of the major concepts provided in this thesis is highlighted in

Chapter 2 to provide a flow for the readers. In chapter 3, a system model

for deriving the timing-offset λ in Rayleigh faded environment. Method of

Moments (MoM) based estimator is proposed for first and cross statistics

12



of received data to estimate variance of noise N which will subsequently be

used to derive timing-offset λ in Rayleigh faded environment In Chapter 4,

we investigate and examine the proposed system’s performance. In Chapter 5

discusses the results found during performance analysis of proposed system

model. Finally in the end, chapter 6 presents the conclusions and further

proposes the future work.
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Chapter 2

Literature Review

In this section, we highlighted challenges related to energy-efficient models

for sensors networks in an IoT realm and estimation techniques used for

evaluating the nuance parameters such as frequency and timing-offsets for

the purpose of omitting faults, offsets and errors which are main hurdles in

achieving our objectives, we also put light on related work. Although IoT

devices are now used widespread in variety of applications such as drought

and harsh environmental conditions and such Micro-sensors must operate for

years on a minimal amount of energy. As a result, a level of optimization

is required to reduce the energy dissipation of such devices. There are a

number of factors such as using application specific routing algorithms that

consumes less power, RF front-end circuitry designed to over come the energy

dissipation, overhauling of the entire system to lower the demand of battery

energy [28]. Perfect synchronisation, on the other hand, is difficult, and any

new energy-efficient [29] design must address this issue by addressing one

or more aspects while keeping in mind the requirements for those specific

14



applications.

Among all such practices for achieving designs [30] that dissipates less

power one is using energy-efficient modulation schemes. Since for it is clear

from previous studies that frequency based modulation performs far better

in terms of energies than other techniques, however the trade-off for such

techniques comes at a cost of bandwidth. Since the next generation of mobile

communication that is 5G networks is going to rule the world for at-least next

decade and bandwidth in this case is a trivial issue as 5G provides humongous

range of speed, connectivity as well as bandwidth, hence both academia and

industry is focusing on energy more than bandwidth at the moment.

The prima facie solution is use frequency based modulation that is more

energy efficient [27] and it gives better results, consuming less power how-

ever practical system that involves such modulation faces a number of chal-

lenges [31]. Among these challenges are frequency and timing-offsets. Due

to these offsets in system receiver is unable to estimate accurate symbol

time-epoch hence it executes it’s own times which off-course intermingles

one symbols into another and hence symbols have to be re-transmitted at

the cost of energy and bandwidth. Moreover this also causes signals spillover

into remaining branches of the detector matched circuits that causes loss

of orthogonality. [32] calculated estimation of the SNR for a non-coherent

binary frequency shift keying, while [33] did same for Rice-fading.

We took our inspiration from [34] problem of frequency offset is out-

right ingeniously and artistically evaluated. We implemented that paper and

solved stochastic mathematics with help of Wolfram Mathematica 11.3. We

accurately evaluated frequency offset and got better results. We accurately

15



evaluated frequency offset p and got better cognizance for our own work.

However quadratic equation at the end of [34] for estimation of frequency

offset were comparatively trivial due indistinguishable and homogeneous na-

ture of those equations. In our case due to inaccurate timing epoch the

second integral part yields quite long and different set of equation in every

particular case, such as case-2 and case-3. Hence it almost impossible to

solve it that way.

Similarly in [35] and [36] used Non-coherent Frequency shift keying (FSK)

modulation, these thesis works have used Maximum likelihood (ML) estimate

approaches with and without data. For analysing the performance of the

generated estimators, Cramer-Rao lower bound expressions are generated.

Similarly [31] have explained the deleterious effects of offsets and modelled

it mathematically in detail. First the frequency offset ρ are incorporated

into non-coherent orthogonal M-FSK system and showed results that how

an increase in the nuisance parameter causes an increase in probability of

bit-error rate, in same paper they also explained the effects of timing-offset

which they denoted by λ.

It is shown that both these offsets causes a considerable amount of loss in

energy as date has to be re-transmitted. Combined effects of both tim-

ing as well as frequency offsets have been evaluated, it is clearly shown

that degradation in far more when both these effects collectively attacks

the system. However non of this above work explains any estimation of

timing-offsets, while frequency offset by the method of moment approach is

estimated by [37]. More related work to this can be seen in [32, 33, 38–40]

similarly timing synchronisation is discussed in [41,42] and in MISO system
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performance of FSK is discussed in [42,43] hence the main focus of our the-

sis is to estimate the timing-offsets. Similarly a lot of work has been done

on 5G networks related to energy efficiency, battery proficiency and better

transmission techniques. [38,44–62] ,

17



Chapter 3

Methodology and System

Model

3.1 Brief Overview

Method of Moments (MoM) based estimator is proposed for first and cross

statistics of received data to estimate variance of noise N which will subse-

quently be used to derive timing-offset λ in Rayleigh faded environment.

A novel method is proposed for the estimation of timing offset error λ

by sending a known pilot training sequences in pairs of two bits/symbols

simultaneously, one after another, this process ameliorates the manipulation

of known mathematical equations for obtaining λ. We identified and derived

suitable equations acquired from different branches of correlators for obtain-

ing λ by sending aforementioned pairs of symbols, We verified these results

in Wolfram Mathematica 11.8 and simulated results in MATLAB.
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3.2 System Model

Taking a Rayleigh fading system into consideration that takes on binary FSK

modulation, where a block of ν symbols encounter fading. When the symbol

carrier frequency at the receiver is known but the symbol period is unknown,

the receiver determines its own symbol epoch that is Deltat second off from

the true time. Due to the lack of time synchronisation, attenuation and

loss of orthogonality occur in the detector that is matched to the incoming

frequency, causing signal overflow into the other detectors. The received

signal can be described as follows

r(t) =


√
Psα(t) exp(−j2π(fc + fi)t+ θ) + n(t) 0 ≤ t ≤ T

√
Psα(t) exp(−j2π(fc + fj)t+ θ) + n(t) T ≤ t ≤ 2T

(3.1)

where Ps is the signal power, α(t) is the Rayleigh fading envelope , fc is the

carrier frequency, and fi and fj are the frequency that corresponds to the

message signal coming one after another due to error in timing error. Here

we assumed that signal Si(t) is followed by signal Sj. Since the local time

estimate is not accurately known hence receiver operates in the period of (

∆t, ∆t + T ) , thus output of the integrator is matched to the transmitted

signal Sm is given by

vm =

∫ ∆t+T

∆t

r(t).
√
P exp(j ∗ 2 ∗ π(fc + fm)t)dt (3.2)
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vm =

∫ T

∆t

√
P exp(−j ∗ 2 ∗ π(fc + fi)t)

√
P exp(j ∗ 2 ∗ π(fc + fm)t)dt+∫ ∆t+T

T

√
P exp(−j ∗ 2 ∗ π(fc + fj)t).

√
P exp(j ∗ 2 ∗ π(fc + fm)t)dt (3.3)

vm = 2P

∫ T

∆t

exp(−j ∗ 2 ∗ π(fc + fi)t) exp(j ∗ 2 ∗ π(fc + fm)t)dt

+

∫ ∆t+T

T

exp(−j ∗ 2 ∗ π(fc + fj)t). exp(j ∗ 2 ∗ π(fc + fm)t)dt+ n (3.4)

3.2.1 Special Cases

Now we are considering special cases, these cases are categorised on basis of

data bits/symbols that are send in a regular intervals. By sending a known

pilot training sequences in pairs of two bits/symbols simultaneously, one after

another for ameliorating the manipulation of known mathematical equations

for obtaining λ. Since we are considering a BFSK system hence we have four

known cases explained below

3.2.2 Cases-1 (i, i)

In this case we send a known sequence of bits first by sending i bit which is

received by both corelators in a time instant of (∆t to T ). This unspecified

symbol epoch is executed by receive itself. For the sake of simplicity we

assumed this time instant same for all four cases. Later same i bit is send

off which is received in a time instant of ( T to ∆T + t). It is assumed that
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corelator-1 has i bit that can be perfectly matched to it. Corelator-1 yields

an output can be modeled as

vm1 = 2P

∫ T

∆t

exp(−j ∗ 2 ∗ π(fc + fi)t) exp(j ∗ 2 ∗ π(fc + fi)t)dt

+

∫ ∆t+T

T

exp(−j ∗ 2 ∗ π(fc + fi)t). exp(j ∗ 2 ∗ π(fc + fi)t)dt+ n (3.5)

Simplifying equation 3.5 gives the output as

vm1 = Pα(T −∆t) + Pα∆t = PTα = Esα (3.6)

similarly correlator-2 is modelled as

vm1 = 2P

∫ T

∆t

exp(−j ∗ 2 ∗ π(fc + fi)t) exp(j ∗ 2 ∗ π(fc + fj)t)dt

+

∫ ∆t+T

T

exp(−j ∗ 2 ∗ π(fc + fi)t). exp(j ∗ 2 ∗ π(fc + fj)t)dt+ n (3.7)

3.2.3 Cases-2 (i, j)

In this case we send a known sequence of bits first by sending i bit which is

received by both corelators in a time instant of (∆t to T ). Later another

bit j bit is send off which is received in a time instant of ( T to ∆T + t).

It is assumed that corelator-1 has i bit that can be perfectly matched to it.

Correlator-1 yields an output can be modeled as
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vm1 = 2P

∫ T

∆t

exp(−j ∗ 2 ∗ π(fc + fi)t) exp(j ∗ 2 ∗ π(fc + fi)t)dt

+

∫ ∆t+T

T

exp(−j ∗ 2 ∗ π(fc + fj)t). exp(j ∗ 2 ∗ π(fc + fi)t)dt+ n

= −i(exp(−i.2(f
i
− fj)πT ) exp−(−i.2(fi − fj)π(T + ∆t))Pα

2(fi − fj)π
+Pα(T−∆t)

(3.8)

Similarly correlator-2 can be modelled as

vm1 = 2P

∫ T

∆t

exp(−j ∗ 2 ∗ π(fc + fi)t) exp(j ∗ 2 ∗ π(fc + fj)t)dt

+

∫ ∆t+T

T

exp(−j ∗ 2 ∗ π(fc + fj)t). exp(j ∗ 2 ∗ π(fc + fj)t)dt+ n

= −i(exp(−i.2(f
i
− fj)πT ) exp(fi − fj)π.∆t)
2(fi − fj)π

+ Pα.∆t (3.9)

3.2.4 Cases-3 (j, i)

In this case we send a known sequence of bits first by sending j bit which is

received by both corelators in a time instant of (∆t to T ). Later another

bit i bit is send off which is received in a time instant of ( T to ∆T + t).

It is assumed that corelator-1 has i bit that can be perfectly matched to it.
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Correlator-1 yields an output can be modeled as

vm1 = 2P

∫ T

∆t

exp(−j ∗ 2 ∗ π(fc + fj)t) exp(j ∗ 2 ∗ π(fc + fj)t)dt

+

∫ ∆t+T

T

exp(−j ∗ 2 ∗ π(fc + fi)t). exp(j ∗ 2 ∗ π(fc + fj)t)dt+ n

= −i(exp(−i.2(f
i
− fj)πT ) exp(fi − fj)π.∆t)
2(fi− fj)π

+ Pα.∆t (3.10)

Similarly correlator-2 can be modelled as

vm1 = 2P

∫ T

∆t

exp(−j ∗ 2 ∗ π(fc + fj)t) exp(j ∗ 2 ∗ π(fc + fj)t)dt

+

∫ ∆t+T

T

exp(−j ∗ 2 ∗ π(fc + fj)t). exp(j ∗ 2 ∗ π(fc + fj)t)dt+ n

= −i(exp(−i.2(f
i
− fj)πT ) exp−(−i.2(fi − fj)π(T + ∆t))Pα

2(fi − fj)π
+Pα(T−∆t)

(3.11)

3.2.5 Cases-4(j, j)

vm1 = 2P

∫ T

∆t

exp(−j ∗ 2 ∗ π(fc + fj)t) exp(j ∗ 2 ∗ π(fc + fi)t)dt

+

∫ ∆t+T

T

exp(−j ∗ 2 ∗ π(fc + fj)t). exp(j ∗ 2 ∗ π(fc + fj)t)dt+ n (3.12)
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vm1 = 2P

∫ T

∆t

exp(−j ∗ 2 ∗ π(fc + fj)t) exp(j ∗ 2 ∗ π(fc + fj)t)dt

+

∫ ∆t+T

T

exp(−j ∗ 2 ∗ π(fc + fj)t). exp(j ∗ 2 ∗ π(fc + fj)t)dt+ n (3.13)

Simplifying equation 3.5 gives the output as

vm1 = Pα(T −∆t) + Pα∆t = PTα = Esα (3.14)

3.3 Method of Moment

The Method of Moment (MoM) estimation includes equating theoretical mo-

ments to the sample moments of given population. MoM for the point esti-

mation is one of the most efficient method for solving tedious and rigorous

problems that are quite non-linear in nature.

3.4 Estimation of λ

Method of Moments (MoM) based estimator is proposed in this section, first

and cross statistics of received data to estimate variance of noise N which will

subsequently be used to derive timing-offset λ in Rayleigh faded environment.
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3.4.1 Statistical properties of signals

There are four possible cases explained above, to better analyse the statistical

properties of the signals we briefly explained case-2 below.

Xi=|Siαi
+ ni|2 (3.15)

The channel gains, α
i

and the noise elements ni are zero mean complex

Gaussian random variables with variance of S/2 and N/2 per real dimension

respectively. For non-coherent BFSK condition for orthogonality is 1/T From

equation 3.8 and 3.9 we get

A3 1 =

∣∣∣∣P.α (e−j·2·π − e−j·2·π(1+λ)

j2π/T

)
+ P.α(T −∆t)

∣∣∣∣2 (3.16)

and for corelator-2 we get

A3 2 =

∣∣∣∣−P.α (e−j·2·π − e−j·2·πλj2π/T

)
+ P.α∆t

∣∣∣∣2 (3.17)

3.4.2 Estimation of Noise

To estimate the Noise, we use first order self and cross statistics from the

obtained data. which will subsequently be used in the estimation of Timing-

offset λ. We borrowed our concept from reference to be given here Dr. Ali’s

paper. Expending equation 3.15 we get

y =
∣∣(Siα)2 + (n)2 + 2 (Siα)(n) | (3.18)
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E(y) =
∣∣E(Siα)2 + E(n)2 + 2 E.(Siα).(n) | (3.19)

As we have explained the statistical properties of these signals hence

E(y) = A31S +N (3.20)

Similarly and the first cross-moment is given as

E(A31A32) = 2A31A32S
2 + SN(A31 + A32) +N2 (3.21)

In practice, we replace the theoretical averages in previous equations with

those of sample averages, i.e E(y) = 1
k

k∑
i=1

yi Hence, we denote the sample

averages as X = 1
k

k∑
i=1

yi and Y = 1
k

k∑
i=1

y2 and E(XY ) = Z equation 3.20 and

3.21 can be solved simultaneously to get the estimate of the noise N

N̂ =
1

2
(X + Y −

√
X2 − 6XY + Y + 4Z) (3.22)

3.4.3 Estimation of Timing Offset

We tried a plethora of mathematical procedures and for estimation of offset λ

However, due to the problem’s extremely non-linear existence, it turned out

to be very difficult to solve and does not produce accurate results for estima-

tion of λ. We took our inspiration from [4]. In [4] problem of frequency offset

is outright ingeniously and artistically evaluated. We implemented that pa-

per and solved stochastic mathematics with help of Wolfram Mathematica

11.3. We accurately evaluated frequency offset p and got better cognizance
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for our own work. However quadratic equation at the end of [4] for esti-

mation of frequency offset were comparatively trivial due indistinguishable

and homogeneous nature of those equations. In our case due to inaccurate

timing epoch the second integral part yields quite long and different set of

equation in every particular case, such as case-2 and case-3. Hence it almost

impossible to solve it that way.

We proposed another method for this purpose. First we send a pilot

symbols of i and subsequently j that yielded mathematical equations as

below

H1=
(exp(i2πT )− exp(i2π(1 + λ))Pα

i2πT
+ Pα(T −∆t) (3.23)

similarly for second branch we get

H2=
(exp(i2πT )− exp(i2π(1 + λ))Pα

i2πT
+ Pα∆t (3.24)

After this part we send a pilot symbols of j and subsequently i that

yielded mathematical equations as below

H3= −
(exp(i2πT )− exp(i2π(1 + λ))Pα

i2πT
+ Pα∆t (3.25)

while the second branch yielded as below

H4= −
(exp(i2πT )− exp(i2π(1 + λ))Pα

i2πT
+ Pα(T −∆t) (3.26)

As explained in the paper [5] it is explicitly explained that λ = ∆T
t

first
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we implicitly derive ∆t

∆t =
H1 +H4

2Pα
(3.27)

From H2 and H3 we get

H3 +H4 = 2Pα(T −∆t) (3.28)

T =
H1 +H2 +H3 +H4

2Pα
(3.29)

and finally we have from 3.29 and 3.27

λ =
H1 +H4

H1 +H2 +H3 +H4

(3.30)
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Chapter 4

Results and Discussions

In this chapter, we will first discuss the deleterious effects caused due to

inaccurate timing epoch. First we simulated and accessed different values of

timing offset in the presence of AWGN channel and later we simulated these

effects for various values of timing offset in presence of both Rayleigh fading

channels and AWGN. These effects are far more worse in presence of Rayleigh

fading channel. It is worth mentioning that these graphs for timing offset in

the presence of Rayleigh fading is not available anywhere in literature, hence

this is one of the contribution to wireless communication community.

In second section we discussed the estimation of variance of the noise

in different scenarios and later we calculated mean square error for noise

estimation. For, third section we discussed the estimation of timing offset

for different values of SNR. In final part we will show how estimation of these

factors saves energy Eb/N0 for different values of λ. For M-FSK the situation

is astonishing, higher modulation is more robust to errors than lower level of

M. This comparison make FSK a better candidate
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Figure 4.1: Bit error probability (BER) for continuous phase M -FSK system
in AWGN scenario with timing offset errors (a) Using M=2 (b) Using Using
M=4
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4.1 Effects of Timing-offset in different mod-

ulation schemes

The effect of timing-offset is far more deleterious than frequency offset. Lack

of orthogonality occurs due to non precise timing epoch. Hence to attain

the same bit error rate more energy is consumed that compromises our main

object for energy efficiency. As values of λ increases the BER decreases.

Figure 4.2: Bit error probability (BER) for continuous phase B-PSK system
in AWGN scenario with timing offset errors
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4.2 Effects of Timing-offset in Rayleigh Fad-

ing environment

As we have discussed earlier, non-coherent detection gives us an attractive

alternative as require no carrier phase tracking but still the effect of timing

offset errors on the bit error rate of on-coherent FSK in Rayleigh is quite

undesirable. λ is the normalized timing error and is defined as λ = δt/T ,

where λ is the actual frequency error, and T is the symbol period. The per-

formance degradation is not severe even for moderately small timing errors.

It requires about 2dB of Eb/No to compensate for a frequency error of λ =

0:1, which corresponds to a 20 modulation index error
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Figure 4.3: Bit error probability (BER) for continuous phase 2-FSK (Binary)
system in AWGN scenario with varying timing offset errors
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4.3 Noise estimation

We have shown in section 3.4.2 how noise estimator is derived when perfect

timing epoch is not unknown. To evaluate the performance of noise estimator

we have simulated mean square error and variance of the estimator. The

mean squared error (MSE) of an estimator
_

θ is given by E0

[(
_

θ − θ
)2
]
. For

an unbiased estimator, the values of MSE approaches variance. From Fig.

4.4 and 4.5, MSE and Variance of Noise estimator for different SNR values

are plotted. It can be proved mathematically that for unbiased estimator

value of MSE approaches variance of the estimator.

Figure 4.4: Mean square error and Variance of Noise estimator for different
SNR values
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Figure 4.5: Averaged mean square error for SNR values

4.4 Timing-offset estimation

Mathematical deviation for the timing offset λ is shown in the section 3.4.3.

In this section we shown will show the estimation of timing-offset for different

values of SNR. In following few lines we will discuss how values of SNR(dB)

are taken precisely in MATLAB 2019 and what values for sake of simplicity

are assumed 1.

For FSK modulation noise variance in terms of power spectral density N0

is given by

σ2 =
N0

2
(4.1)

For FSK modulation the symbol energy is given by

Es = RmRcEb (4.2)
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Figure 4.6: Estimation of λ Method of moment estimator for the data-aided
estimator scenario.

Where Es is Symbol energy per modulated bit (x), Rm = log2(M) RC is

the code rate of the system if a coding scheme is used. In this example,

since no coding scheme is used Rc = 1. Eb is the Energy per information

bit.Assuming ES=1 for our case. Eb/N0 can be represented as (using above

equations),

Eb/N0 = Es/RmRcN0 = Es/RmRc2σ0 = Es/2RmRcσ0 (4.3)

From the above equation the noise variance for the given Eb/N0 can be
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calculated as

σ2 =

[
2RmRc

Eb
N0

]−1

(4.4)

For sake of simplicity we have assumed that signal power P=1 and H is

simulated as 1/
√

2 ∗ Randn(1, 0) + jRandn(1, 0). hence signal power in our

case is assumed as 0.707 while noise power changes for each value of Eb/N0

value hence this way we get perfect SNR values in natural numbers with

perfect precision. In figure 4.6 shows the estimates of λ the timing-offset

factor using method of moment approach.
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Chapter 5

Conclusion and Future Work

5.1 Concluding Notes

In this thesis, we have studied deleterious effects of timing offset in a case

when symbol time epoch is unknown to the receiver, first we simulated and

accessed different values of timing offset in the presence of AWGN channel

and later we simulated these effects for various values of timing offset in

presence of both Rayleigh fading channels and AWGN. We also simulated

the scenarios of imperfect symbol epoch for other modulation schemes and

showed that FSK is the best candidate as increase in timing-offset factor

does not worsen detection comparatively to an extend as in other modulation

schemes. We also estimated variance of noise N which is subsequently used to

derive timing-offset λ in Rayleigh faded environment. Graphs for the Mean

square errors as well variance of the estimator is shown. As MSE approaches

variance in higher SNR values we concluded that our estimator is unbiased.

We proposed a novel method for the estimation of timing offset error λ.
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Our model is different from other models for estimation as we send simulta-

neous known bits in pairs in four intervals. We are sending a known pilot

training sequences in pairs of two bits/symbols simultaneously, one after an-

other, we ameliorates the manipulation of known mathematical equations for

obtaining λ. We use method of moment approach for this purpose.

5.2 Future Work

Since we took our initial inspiration for estimation of timing-offset factor

from estimation of Carrier frequency offset and we know all basic poetic

undertones and underlying mathematical concepts for all these errors hence

the future work for our work is to estimate these effects under both timing as

well as frequency offsets. A comparative analysis of these errors can show how

much energy can be saved by estimating these errors. Saving good amount

of energies can be a quintessence of energy efficacy for energy constrain IoT

devices that works under harsh environment.
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