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Abstract—This paper presents a two-dimensional phase ex-
traction system using passive WiFi sensing to monitor three basic
elderly care activities including breathing rate, essential tremor
and falls. Specifically, a WiFi signal is acquired through two
channels where the first channel is the reference one, whereas the
other signal is acquired by a passive receiver after reflection from
the human target. Using signal processing of cross-ambiguity
function, various features in the signal are extracted. The entire
implementations are performed using software defined radios
having directional antennas. We report the accuracy of our system
in different conditions and environments and show that breathing
rate can be measured with an accuracy of 87% in the absence
of obstacles. We also show a 98% accuracy in detecting falls and
93% accuracy in classifying tremor. The results indicate that
passive WiFi systems show great promise in replacing typical
invasive health devices as standard tools for health care.

Keywords—Passive WiFi sensing; breathing rate measurement;
essential tremor classification; fall detection; phase extraction;
Doppler; SDRs

I. INTRODUCTION

Over the past few years, there has been a growing interest in
ubiquitous health monitoring [1][2]. One of the areas which
benefited most from this surge in the interest is elderly care [3].
Today, we see wearable devices that continuously monitor vital
health signs [4], track essential tremor in Parkinson patients
[5], generate alarms if there are any falls, and do more.
However, such devices present several challenges: they intrude
with users’ routine activities, they have to be worn all the time
even during sleep, and they have to be frequently recharged.
With the advances in wireless sensing, it has become possible
to track and localize human motion [6-8]. In this paper, we
explore if we can tap onto these advances to monitor three
basic elderly care activities; i.e., breathing, tremor and falls.

Breathing involves continuous inhale and exhale move-
ments and may be used to study the subject’s physiological
state, her stress levels, or even emotions like fear and relief.
Tremor is a movement disorder in which the subject expe-
riences rhythmic shaking of a body part such as hands [5].
It is highly prevalent among older people and although not
life threatening, it causes great inconvenience in social and
daily life settings, such as writing and eating. Falls are also
highly common among the ageing population and detecting
them early is integral to effective interventions and subsequent
treatments.

Despite the ubiquitous nature of wireless networks, a
little work has been done on exploring their suitability for

health applications. This is concerning since the typical health
monitoring techniques are inconvenient; they require contact
with human body, and most of them are intrusive. For example,
current breath monitoring solutions require a chest band [4],
nasal probe [9], or pulse oximeter [10]. Technologies that are
more comfortable such as wrist bands tend to be erroneous and
unreliable. Tremor and fall monitoring devices are similarly in-
convenient. However, the bigger concern is that contact devices
are not suitable for elderly health care. Using a technology
round the clock may be cumbersome or even demeaning for
the elderly. Worse, they may be in a condition such as dementia
where they can’t remember to put on the device once they have
worn it off.

Related literature on target detection and localization fo-
cuses on both active and passive radar techniques. Active
radars employ dedicated transmitters, use high bandwidth and
often require complex antenna arrays to go along with them
[8]. In contrast, passive radars utilize the transmitted signals
in the environment such as WiFi and cellular signals for target
monitoring [11][12]. Passive radars offer numerous advantages
when compared to active radars, i.e., they are low-cost and
covert due to their receive-only nature, they operate license
free due to no bandwidth requirements, and they offer better
Doppler resolution due to the possibility of higher integrations
times.

To the best of the authors’ knowledge, this is the first
comprehensive study on elderly-focused health care applica-
tions using passive WiFi sensing. Specifically, this research
introduces a vital health wireless device (Wi-Vi) and makes
the following contributions:

� Proposes a phase extraction system in 2-D to de-
termine breathing rate, classify essential tremor and
detect falls.

� Carries out extensive experiments to study the accu-
racy of elderly care applications in different environ-
ments and conditions.

A. Related Work

Multiple approaches have been proposed for human mo-
tion detection and other applications using passive sensing.
Kotaru et.al presented an indoor localization system using the
channel state information (CSI) and received signal strength
information (RSSI) [7]. Similar approaches have been used
for other applications such as keystroke identification [13], in-
home activity analysis [8], and virtual drawing [14]. Some
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Fig. 2. Displacement axes during vital health care activities. Dotted lines
show inactive axes for a specific activity.

tracking phase variations in the reflected signal, we can also
track the movements in the environment.

If we divide the data into B batches and assume that the
time delay between reference and the surveillance signals is � ,
then the cross correlation result in time domain for each batch
b, where b 2 f 1; 2; :::; B g, is represented as

y[b] =
Nb∑
n=1

r [i b + n � � ]s�[i b + n]; (6)

where Nb is the number of samples in each batch, and i b
is the starting sample in each batch. In (6), (:)� denotes the
conjugate operator on a complex number. We note that since
passive radars have a limited range resolution, therefore, �
can be set to the maximum time delay our system is likely to
encounter. If the sampling frequency is f s and the time delay
between the reference and surveillance signals is t lag , then the
delay is given as

� =
t lag
f s

: (7)

In typical small scale motions such as breathing, the time delay
is in the order of nano seconds (ns). Hence, we can assume � to
be zero in context of our applications. In order to get smoother
transitions in y[b] (and consequently in � [b]), we consider an
x% overlap between consecutive batches. The exact choice of
x is governed by system’s latency requirements. The phase of
each batch, � [b], can now be found by taking inverse tangent
of real and imaginary parts of complex series y[b], i.e.,

� [b] = tan�1 < (y[b])
= (y[b])

: (8)

Although � [b] encodes small scale body motions, it also
captures reflections off static objects such as furniture and
walls. In order to remove these time invariant phase shifts,
we normalize � [b] to zero mean and unit variance, i.e.,

� [b] =
� [b] � � b√

1
W

∑B
i=b�W+1(� [i ] � � b)2

; (9)

where W denotes the window length, and � b is given as

� b =
1

W

B∑
i=b�W+1

� [i ]: (10)

III. PASSIVE RADAR SYSTEM MODEL IN 2-D

Figure (2) shows the displacements involved in the three
activities of human breathing, essential tremor and human fall,
respectively. Human respiration involves movements along a
single axis which can be quantified by placing a surveillance
antenna perpendicular to human chest. In contrast, essential
tremor involves motion in two different planes which requires a
minimum of two antennas placed perpendicular to one another.
Finally, the motion involved in human fall is also along a single
axis but perpendicular to the breathing motion.

In order to detect phase variations in these applications, Vi-
Wi uses two surveillance antennas surv1 and surv2 with the
following polar coordinate geometry:

surv1 : � =
� �
2

; � = 0; (11)

surv2 : � =
� �
2

; � =
� �
4

: (12)

where � denotes the angles surv1 and surv2 make with the x-y
plane in radians. The choice of � for surv2 presents an interest-
ing problem. Since, the antennas are highly directive, picking
a � close to 90 degrees implies that the target movement has
to be very close to the antenna to be detected. In contrast, �
of 0 degrees does not pick any movement in the x-z plane
due to Doppler shift being 0. As a compromise, we choose a
� of 45 degrees. In such a configuration, correlation signal at
surv2 is given by s2[n] and is formed by the superimposition
of Doppler shifts in x-y and x-z planes, and can be represented
by the following equation, i.e.,

s2[n] =
∑

fd2fdxy

Ax [n + � ]ei2πfd n +
∑

fd2fdxz

Ax [n + � ]ei2πfd n;

(13)

where f dxy and f dxz contain a set of Doppler shifts in x-y and
x-z planes, respectively. Similarly, correlation signal at surv1
is given by s1[n] and is represented by the following equation,
i.e.,

s1[n] =
∑

fd2fdxy

Ax [n + � ]ei2πfd n: (14)

Because of the geometry of surveillance antennas, extracted
phase information from � 1[n] also leaks into � 2[n]. In order for
s2[n] to only track movements in x-z plane, Vi-Wi calculates
�

′

2[n] as
�

′

2[n] = � 2[n] � � 1[n]; (15)

where � 1[n] and � 2[n] are phase signals calculated through
Equation (8) from s1[n] and s2[n] respectively, and �

′

2[n] is a
modified phase signal to account for information leakage from
x-y plane to x-z plane.

A. Feature Extraction

After Vi-Wi extracts phases from surveillance signals, it pro-
ceeds by extracting features in following order:

� Vi-Wi determines if there is any activity in the envi-
ronment.
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Fig. 3. Tracking �1 and �2 during breathing, tremor and human fall.

� Vi-Wi classifies the dominant activity (the activity that
results in the highest Doppler shift)

� Vi-Wi extracts specific activity information.

To illustrate these steps, let us consider the phase signals
� 1[n] and � 2[n] associated with surveillance signals s1[n]
and s2[n], against each activity. Fig. 3(a) shows that when
a person inhales, her chest moves towards the device resulting
in a positive Doppler shift; when she inhales, her chest moves
away from the device causing a negative Doppler. Fig. 3(c) and
3(d) show variations in surveillance signals when the dominant
activity is essential tremor. In such a scenario, both � 1 and � 2
alternate between positive and negative Doppler shifts. Finally,
a human fall causes an aperiodic variation in � 2 as shown in
Fig. 3(f).

However, there may be instances when a user moves her
limbs or makes some other dominant motion. To deal with
such scenarios, Vi-Wi operates on a window of 20 seconds and
determines if � 1 and � 2 are periodic. If both are aperiodic, we
detect a random movement such as limb motion. However, if
only � 2 is aperiodic, this indicates a sudden movement in x-z
plane and we detect a fall. If � 1 is periodic and � 2 is aperiodic,
we recognize this as breathing motion in x-y plane only. If
both are periodic, we detect tremor activity. In the following
section, we show how Vi-Wi determines the specifics of an
activity once it has been classified.

Breathing Rate Measurement

Fundamentally, the breathing rate can be extracted by tak-
ing fast Fourier transform (FFT) of the phase signal and
subsequently picking the FFT peak. However, this does not
provide an accurate estimate since the frequency resolution
is quite small. Specifically, for a window size of 10 seconds,
the frequency resolution is only 0.1Hz or approximately 6
breaths per second. In order to improve this resolution, we

utilize a well known property that the dominant frequency of
a signal can be accurately measured by doing regression on
the phase of the complex time-domain signal [19]. Since, the
phase of complex signal � 1[n] is linear, its slope corresponds
to breathing rate estimate in Hertz .

Tremor Classification

Tremor measurement is similar to breathing rate measurement,
but with two main variations. First, the dominant essential
tremor frequency is in range 4-11 Hz as compared to 0.5-2
Hz in breathing. Second, the tremor measurements are taken
across both x-y and x-z planes instead of just x-y plane.

Accurately determining the frequency in such resolution range
is challenging. Moreover, the precise frequency estimate of
essential tremor does not provide any added value to the health
professionals. Therefore, we instead focus our experiments
on classifying tremor as either low or high. The dominant
frequency is measured using the same approach as in last
passage, and then a classification decision is made based on
whether the frequency is above or below a certain threshold.
We note that if the frequency is too large or too small, we
discard the activity as random motion.

Fall detection

Fall detection is done by locating an instance of time when
there is a spike in � 2[n] and � 1[n] is flat. We note that
fall detection can be done continuously even when Vi-Wi is
monitoring subject’s breathing rate or essential tremor.

IV. IMPLEMENTATION

The implementation settings are shown in Fig. 4 and explained
below.

A. Hardware

The passive sensing system used in the experiments utilizes
USRP B200 software defined radio with an omni-directional
antenna as an access point. The access point transmits orthog-
onal frequency division multiplexed symbols at a data rate of
3 Mb/s with a code rate of 1

2 and quadrature phase shift keying
modulation. With this configuration, the transmit power of the
WiFi source is estimated to be around -10 dBm. At the receiver
end, we have log-periodic directional antennas with 5dBi gain
and 60 degree beam-width as shown in Fig. 4. The signals
received at these antennas are digitized through a Spartan 6
XC6SLX75 FPGA and 61.44 MS/s, 12 bit ADC. For non
line-of-sight experiments (with obstacles), we use a 30 dB RF
power amplifier with the transmit antenna.

B. Software

We implement Python blocks in GNU Radio for signal pro-
cessing operations. The code runs in real-time and the display
is updated on Python matplotlib library every 2 seconds.

C. Ground Truth

In our experiments, we used a pulse oximeter to establish
ground truth for breathing rate measurements. However, our
study of essential tremor was limited as we could not find a
reliable device to estimate tremor. Therefore, we developed a



Fig. 8. Change in breathing rate accuracy with transmit power. Distance of
the target is set to 1 meter. The accuracy improves by around 11% when the
transmit power is changed from -20 dBm (78.5%) to 20 dBm (87%).

the participants to change their orientations and sit at slight
angles facing the receive antennas. In particular, we asked the
subjects to sit at three angles facing the antenna: 300, 600

and 900. At each distance, changing the sitting orientation
did not have any significant effect on breathing rate accuracy.
This is because during breathing, the chest expands in all
directions and even though the subject is facing sideways, his
chest movements can be detected. However, we noticed that
changing the subject orientation caused tremor classification
accuracy to drop significantly. This is because tremor motion
is concentrated along fixed directions and as the orientation of
hand changes, Doppler shift can no longer be monitored.

Our final experiment was to analyze the effect of transmit
power on system accuracy as shown in Fig. 8. Our custom
designed AP offered a maximum power of -10 dBm. By
applying an external 30 dB RF power amplifier, Vi-Wi’s
breathing rate measurement accuracy improved by 7.4%.

A. Limitations

In this section, we discuss some of the limitations of Vi-Wi:

� Vi-Wi assumes that there are no motion or background
artefacts in the environment. While Vi-Wi can work
reasonably well in presence of background noise,
its performance is severely affected when there are
multiple movements.

� Vi-Wi may be prone to detecting non-human motion.
For example, it may mistake fall of stick in the
environment as a human fall.

� Since, Vi-Wi requires a minimum signal-to-noise ratio
(SNR), it works in a limited range of 5 meters. Beyond
this distance, the accuracy of Vi-Wi drops signficantly.

VI. CONCLUSION AND FUTURE DIRECTIONS

The health applications using passive radar sensing have been
largely untapped. The traditional methods to monitor breathing
rate, tremor and falls are invasive and inconvenient. The mod-
ern methods using active radars require dedicated transmitters

and high bandwidth. In contrast, Vi-Wi offers covert, license-
free and convenient health monitoring. Future works can focus
on various aspects of Vi-Wi. First, monitoring vital health
activities in presence of motion and background artefacts is
an interesting challenge. Second, additional health activities
such as human gait can be investigated. Third, research can
focus on using multiple access points for analyzing activities
of more than one target.

Beyond health, passive radar sensing offers a number of
promising future directions. By utilizing the access points
already available in buildings and intelligently assigning them
to the targets of interest, one can achieve near ubiquitous
sensing.
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